Skip to main content

Advertisement

Log in

Are strigolactones a key in plant–parasitic nematodes interactions? An intriguing question

  • Opinion Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plant parasitic nematodes (PPNs) are among the most important pests in agriculture. Chemical inputs are widely used for their control; however, the negative impact of these agrochemicals on environmental and human health is a current concern. Biological control and interventions on rhizosphere signaling are promising ecofriendly alternatives for managing these pests in the field. Nevertheless, the molecular mechanisms involved in plant-PPN interaction need to be unraveled in order to develop appropriate management strategies. Strigolactones (SLs) are phytohormones that are exuded from roots, acting as signaling molecules in the rhizosphere. They are important cues in the establishment of arbuscular mycorrhizal and Rhizobium-legume symbioses. Recently, it has been shown that SLs can also affect the interaction between plants and certain PPN species; however, data are scarce and ambiguous. Some studies propose that SLs positively regulate PPN species performance acting as attractants to roots, or by inhibiting plant defense responses. On the contrary, other studies suggest that SLs could negatively regulate PPN performance by reducing abscisic acid, or by promoting plant interactions with beneficial soil microorganisms. In the present Opinion paper, we discuss these controversial results and propose future research challenges to develop new management strategies against these harmful PPN species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

The manuscript has not associated research data.

Code availability

Not applicable for that section.

References

  • Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  PubMed  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    CAS  PubMed  Google Scholar 

  • Andreo-Jiménez B, Ruyter-Spira C, Bouwmeester H, López-Ráez JA (2015) Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant–microbe interactions below-ground. Plant Soil 394:1–19

    Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño AM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    CAS  PubMed  Google Scholar 

  • Ashoub AH, Amara MT (2010) Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. J Am Sci 6:321–328

    Google Scholar 

  • Bécard G (2017) How plants communicate with their biotic environment. Academic, New York

    Google Scholar 

  • Blake SN, Barry KM, Gill WM, Reid JB, Foo E (2015) The role of strigolactones and ethylene in disease caused by Pythium irregulare. Mol Plant Pathol 17:680–690

    PubMed  PubMed Central  Google Scholar 

  • Bonaventure G (2018) Plants recognize herbivorous insects by complex signalling networks. Annu Plant Rev:1–35

  • Bonfante P, Genre A (2015) Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’? Trends Plant Sci 20:150–154

    CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signaling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    CAS  PubMed  Google Scholar 

  • Brun G, Braem L, Thoiron S, Gevaert K, Goormachtig S, Delavault P (2018) Seed germination in parasitic plants: what insights can we expect from strigolactone research? J Exp Bot 69:2265–2280

    CAS  PubMed  Google Scholar 

  • Cabrera J, Barcala M, Fenoll C, Escobar C (2014) Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signaling. Front Plant Sci 5:107

    PubMed  PubMed Central  Google Scholar 

  • Caccia M, Lax P, Doucet ME (2013) Effect of entomopathogenic nematodes on the plant–parasitic nematode Nacobbus aberrans. Biol Fertil Soils 49:105–109

    CAS  Google Scholar 

  • Caccia M, Marro N, Dueñas JR, Doucet ME, Lax P (2018) Effect of the entomopathogenic nematode-bacterial symbiont complex on Meloidogyne hapla and Nacobbus aberrans in short-term greenhouse trials. Crop Prot 114:162–166

    Google Scholar 

  • Cheng F, Wang J, Song Z, Cheng JE, Zhang D, Liu Y (2017a) Nematicidal effects of 5–aminolevulinic acid on plant–parasitic nematodes. J Nematol 49:295–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Floková K, Bouwmeester H, Ruyter-Spira C (2017b) The role of endogenous strigolactones and their interaction with ABA during the infection process of the parasitic weed Phelipanche ramosa in tomato plants. Front Plant Sci 8:392

    PubMed  PubMed Central  Google Scholar 

  • Clarke CR, Timko MP, Yoder JI, Axtell MJ, Westwood JH (2019) Molecular dialog between parasitic plants and their hosts. Annu Rev Phytopathol 57:279–299

    CAS  PubMed  Google Scholar 

  • Contina JB, Dandurand LM, Knudsen GR (2017) Use of GFP–tagged Trichoderma harzianum as a tool to study the biological control of the potato cyst nematode Globodera pallida. Appl Soil Ecol 115:31–37

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:fiw036. https://doi.org/10.1093/femsec/fiw036

    Article  CAS  PubMed  Google Scholar 

  • Damascena AP, Ferreira JCA, Costa MGS, de Araujo Junior LM, Wilcken SRS (2019) Hatching and mortality of Meloidogyne enterolobii under the interference of entomopathogenic nematodes in vitro. J Nematol 51:1–8

    Google Scholar 

  • De Cuyper C, Fromentin J, Yocgo RE, De Keyser A, Guillotin B, Kunert K, Didier Boyer F, Goormachtig S (2015) From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J Exp Bot 66:137–146

    PubMed  Google Scholar 

  • Decraemer W, Hunt D (2006) Structure and classification. In: Perry R, Moens M (eds) Plant nematology. CAB International, Oxfordshire, pp 3–32

    Google Scholar 

  • Del Valle EE, Lax P, Dueñas JR, Doucet ME (2013) Effects of insect cadavers infected by Heterorhabditis bacteriophora and Steinernema diaprepesi on Meloidogyne incognita parasitism in pepper and summer squash plants. Ciencia e Investigación Agraria 40:109–118

    Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234:419–427

    CAS  PubMed  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    CAS  PubMed  Google Scholar 

  • Elahi E, Weijun C, Zhang H, Nazeer M (2019) Agricultural intensification and damages to human health in relation to agrochemicals: application of artificial intelligence. Land Use Policy 83:461–474

    Google Scholar 

  • Escudero-Martinez CM, Guarneri N, Overmars H, van Schaik C, Bouwmeester H, Ruyter-Spira C, Goverse A (2019) Distinct roles for strigolactones in cyst nematode parasitism of Arabidopsis roots. Eur J Plant Pathol 154:129–140

    CAS  Google Scholar 

  • Fan JW, Hu CL, Zhang LN, Li ZL, Zhao FK, Wang SH (2015) Jasmonic acid mediates tomato’s response to root knot nematodes. J Plant Growth Regul 34:196–205

    CAS  Google Scholar 

  • Fernández-Aparicio M, Reboud X, Gibot-Leclerc S (2016) Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Front Plant Sci 7:135

    PubMed  PubMed Central  Google Scholar 

  • Fleming TR, Maule AG, Fleming CC (2017) Chemosensory responses of plant parasitic nematodes to selected phytochemicals reveal long-term habituation traits. J Nematol 49:462–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    CAS  PubMed  Google Scholar 

  • Fudali SL, Wang C, Williamson VM (2013) Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla. Mol Plant-Microbe Interact 26:75–86

    CAS  PubMed  Google Scholar 

  • Fujimoto T, Tomitaka Y, Abe H, Tsuda S, Futai K, Mizukubo T (2011) Expression profile of jasmonic acid–induced genes and the induced resistance against the root–knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. J Plant Physiol 168:1084–1097

    CAS  PubMed  Google Scholar 

  • Gillet FX, Bournaud C, de Souza Júnior AJD, Grossi-de-Sa MF (2017) Plant-parasitic nematodes: towards understanding molecular players in stress responses. Ann Bot 119:775–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377

    Google Scholar 

  • Goverse A, Overmars H, Engelbertink J, Schots A, Bakker J, Helder J (2000) Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Mol Plant-Microbe Interact 13:1121–1129

    CAS  PubMed  Google Scholar 

  • Greco N, Di Vito M (2009) Population dynamics and damage levels. In: Perry RN, Moens M, Starr JL (eds) Root–knot nematodes. CAB International, Wallingford, pp 246–274

    Google Scholar 

  • Grunewald W, Cannoot B, Friml J, Gheysen G (2009) Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection. PLoS Pathog 5:e1000266

    PubMed  PubMed Central  Google Scholar 

  • Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LSP (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci 111:851–856

    PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA, Lindow SE (2001) Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathol 91:415–422

    CAS  Google Scholar 

  • Haq IU, Sarwar MK, Faraz A, Latif MZ (2020) Synthetic chemicals: major component of plant disease management. In: Haq IU, Ijaz S (eds) Plant disease management strategies for sustainable agriculture through traditional and modern approaches. Springer, Cham, pp 53–81

    Google Scholar 

  • Hassan S, Behm CA, Mathesius U (2010) Effectors of plant parasitic nematodes that re-program root cell development. Funct Plant Biol 37:933–942

    CAS  Google Scholar 

  • Hayat S, Faraz A, Faizan M (2017) Root exudates: composition and impact on plant–microbe interaction. Biofilms Plant Soil Health 14:179–193

    Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann J, Grundler F (2007) How do nematodes get their sweets? Solute supply to sedentary plant-parasitic nematodes. Nematology 9:451–458

    Google Scholar 

  • Horvath DP, Bruggeman S, Moriles-Miller J, Anderson JV, Dogramaci M, Scheffler BE, Clay S (2018) Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period. Plant Direct 2:00057

    Google Scholar 

  • Hu Y, You J, Li C, Williamson VM, Wang C (2017) Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines. Sci Rep 7:1–13

    Google Scholar 

  • Hunt DJ, Palomares-Rius JE, Manzanilla-López RH (2018) Identification, morphology and biology of plant parasitic nematodes. In: Sikora R, Coyne J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI Publisher, Wallingford, pp 20–61

    Google Scholar 

  • Jones JT, Haegeman A, Danchin EGT, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WML et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    PubMed  PubMed Central  Google Scholar 

  • Kammerhofer N, Radakovic Z, Regis JM, Dobrev P, Vankova R, Grundler FM, Siddique H, Hofmann J, Wieczorek K (2015) Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytol 207:778–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kihika R, Murungi LK, Coyne D, Hassanali A, Teal PE, Torto B (2017) Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory. Sci Rep 7:1–10

    CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MP, de Maagd RA, Ruyter-Spira C, Bouwmeester H et al (2012) The tomato carotenoid cleavage dioxygenase 8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547

    CAS  PubMed  Google Scholar 

  • Koltai H, Matusova R, Kapulnik Y (2012) Strigolactones in root exudates as a signal in symbiotic and parasitic interactions. In: Vivanco JM, Balusaka F (eds) Signaling and communication in plants. Springer, Berlin, pp 49–73

    Google Scholar 

  • Kong CH, Zhang SZ, Li YH, Xia ZC, Yang XF, Meiners SJ, Wang P (2018) Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun 9:1–9

    Google Scholar 

  • Lahari Z, Ullah C, Kyndt T, Gershenzon J, Gheysen G (2019) Strigolactones enhance root-knot nematode (Meloidogyne graminicola) infection in rice by antagonizing the jasmonate pathway. New Phytol 224:454–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lax P, Marro N, Agaras B, Valverde C, Doucet ME, Becerra A (2013) Biological control of the false root–knot nematode Nacobbus aberrans by Pseudomonas protegens under controlled conditions. Crop Prot 52:97–102

    Google Scholar 

  • Li J, Zou CG, Xu JP, Ji XL, Niu XM, Yang JK, Huang XW, Zhang KQ (2015) Molecular mechanisms of nematode–nematophagous microbe interactions: basis for biological control of plant–parasitic nematodes. Annu Rev Phytopathol 53:67–95

    CAS  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    PubMed  Google Scholar 

  • López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22:527–537

    PubMed  Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Hakeem K, Akhtar M, Abdullah S (eds) Plant, soil and microbes. Springer, Cham, pp 253–269

    Google Scholar 

  • Marro N, Lax P, Doucet ME, Cabello M, Becerra A (2014) Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 57:668–674

    Google Scholar 

  • Marro N, Caccia M, Doucet ME, Cabello M, Becerra A, Lax P (2018) Mycorrhizas reduce tomato root penetration by false root–knot nematode Nacobbus aberrans. Appl Soil Ecol 124:262–265

    Google Scholar 

  • Martínez-Medina A, Fernández I, Lok GB, Pozo MJ, CMJ P, Van Wees SM (2016) Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377

    PubMed  Google Scholar 

  • McAdam EL, Hugill C, Fort S, Samain E, Cottaz S, Davies NW, Reid JB, Foo E (2017) Determining the site of action of strigolactones during nodulation. Plant Physiol 175:529–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsumasu K, Seto Y, Yoshida S (2015) Apoplastic interactions between plants and plant root intruders. Front Plant Sci 6:617

    PubMed  PubMed Central  Google Scholar 

  • Moens M, Perry RN, Jones JT (2018) Cyst nematodes-life cycle and economic importance. In: Perry RN, Moens M, Jones JT (eds) Cyst nematodes. CAB International, Wallingford, pp 1–26

    Google Scholar 

  • Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K (2016) Carlactone–type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry 130:90–98

    CAS  PubMed  Google Scholar 

  • Nahar K, Kyndt T, Nzogela YB, Gheysen G (2012) Abscisic acid interacts antagonistically with classical defense pathways in rice–migratory nematode interaction. New Phytol 196:901–913

    CAS  PubMed  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Maafi ZT (2011) Current nematode threats to world agriculture. In: Jones JT, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 21–43

    Google Scholar 

  • Perry RN, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Piisilä M, Keceli MA, Brader G, Jakobson L, Jõesaar I, Sipari N, Kollist H, Palva ET, Kariola T (2015) The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol 15:53

    PubMed  PubMed Central  Google Scholar 

  • Poinar GO (2011) The evolutionary history of nematodes—as revealed in stone, amber and mummies. Brill, Leiden, p 429

    Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    PubMed  PubMed Central  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    CAS  PubMed  Google Scholar 

  • Preece C, Peñuelas J (2020) A return to the wild: root exudates and food security. Trends Plant Sci 25:14–21

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño AM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2015) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    PubMed  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeij A, van Bezouwen L, de Ruijter N, Cardoso C, López-Ráez JA, Matusova R, Bours R et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    CAS  PubMed  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant–parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    PubMed  PubMed Central  Google Scholar 

  • Sharma IP, Sharma AK (2016) Physiological and biochemical changes in tomato cultivar PT–3 with dual inoculation of mycorrhiza and PGPR against root–knot nematode. Symbiosis 69:1–9

    Google Scholar 

  • Shine MB, Xiao X, Kachroo P, Kachroo A (2019) Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Sci 279:81–86

    CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45

    CAS  PubMed  Google Scholar 

  • Sikder MM, Vestergård M (2020) Impacts of root metabolites on soil nematodes. Front Plant Sci 10:1792

    PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic, New York

    Google Scholar 

  • Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Garcia-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    CAS  Google Scholar 

  • Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Vereecke D (2015) Strigolactones as an auxiliary hormonal defense mechanism against leafy gall syndrome in Arabidopsis thaliana. J Exp Bot 66:5123–5134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian B, Yang J, Zhang KQ (2007) Bacteria used in the biological control of plant–parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    CAS  PubMed  Google Scholar 

  • Topalović O, Hussain M, Heuer H (2020) Plants and associated soil microbiota cooperatively suppress plant–parasitic nematodes. Front Microbiol 11:313

    PubMed  PubMed Central  Google Scholar 

  • Torres-Vera R, García JM, Pozo MJ, López-Ráez JA (2014) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216

    CAS  PubMed  Google Scholar 

  • Torres-Vera R, García JM, Pozo MJ, López-Ráez JA (2016) Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiol Mol Plant Pathol 94:100–107

    CAS  Google Scholar 

  • van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265

    PubMed  Google Scholar 

  • Vanholme B, De Meutter J, Tytgat T, Van Montagu M, Coomans A, Gheysen G (2004) Secretions of plant-parasitic nematodes: a molecular update. Gene 332:13–27

    CAS  PubMed  Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39:3–17

    CAS  PubMed  Google Scholar 

  • Vos CM, Yang Y, De Coninck B, Cammue BPA (2014) Fungal (−like) biocontrol organisms in tomato disease control. Biol Control 74:65–81

    Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322

    CAS  PubMed  Google Scholar 

  • Wubben MJ, Su H, Rodermel SR, Baum TJ (2001) Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant-Microbe Interact 14:1206–1212

    CAS  PubMed  Google Scholar 

  • Wuyts N, Swennen R, De Waele D (2006) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchs penetrans and Meloidogyne incognita. Nematology 8:89–101

    CAS  Google Scholar 

  • Xie XN, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    CAS  PubMed  Google Scholar 

  • Xu X, Fang P, Zhang H, Chi C, Song L, Xia X, Yu J (2019) Strigolactones positively regulate defense against root-knot nematodes in tomato. J Exp Bot 70:1325–1337

    CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    CAS  PubMed  Google Scholar 

  • Yuan C, Ahmad S, Cheng T, Wang J, Pan H, Zhao L, Zhang Q (2018) Red to far-red light ratio modulates hormonal and genetic control of axillary bud outgrowth in Chrysanthemum (Dendranthema grandiflorum ‘Jinba’). Int J Mol Sci 19:1590

    PubMed Central  Google Scholar 

Download references

Acknowledgements

We greatly thank Dra. María José Pozo and Dr. Eduardo Nouhra for their critical reading and comments on this manuscript. N.M. thanks Bec.ar program (call 2016) from Ministerio de Modernización (República Argentina) to do research training at the Estación Experimental del Zaidín, Granada, Spain. N.M. is professor at the Universidad Nacional de Córdoba, Argentina. J.A.L.R acknowledge to the Spanish National R&D Plan of the Ministerio de Ciencia, Innovación y Universidades (MICIU) and the European Regional Development Fund (ERDF) for the project RTI2018-094350-B-C31. The authors gratefully acknowledge Andrés Baro for image editing.

Funding

European Regional Development Fund, Grant RTI2018-09450-B-C31 and Bec.ar program (call 2016) from Ministerio de Modernización (República Argentina).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable for that section.

Corresponding author

Correspondence to Nicolás Marro.

Ethics declarations

Ethics approval

Not applicable for that section.

Consent to participate

Not applicable for that section.

Consent for publication

Not applicable for that section.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marro, N., Caccia, M. & López-Ráez, J.A. Are strigolactones a key in plant–parasitic nematodes interactions? An intriguing question. Plant Soil 462, 591–601 (2021). https://doi.org/10.1007/s11104-021-04862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04862-8

Keywords

Navigation