Skip to main content

Advertisement

Log in

Thermal Analytical Approaches to Characterization and Compatibility Studies of Duloxetine Hydrochloride

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Duloxetine hydrochloride (DLX) is a serotonin and noradrenalin reuptake inhibitor mostly used for the treatment of major depressive and anxiety disorders. Physicochemical characterization of this drug and compatibility studies with excipients are particularly important during pharmaceutical technology development in order to guarantee the quality, safe and effective dosage form. Duloxetine is acid labile, thus the final product must be formulated with enteric coating to prevent degradation in the stomach for proper drug delivery. The major purpose of this work was to characterize this drug in solid-state form through thermal analytical techniques (TG/DTG, DSC), diffuse reflectance infrared Fourier transform (DRIFT) spectrophotometry, morphological analysis by scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The compatibility studies with excipients (1:1 w/w) was carried out using sodium starch glycolate (SSG), lactose (LAC), magnesium stearate (MS), croscarmellose sodium (CS), colloidal silicon dioxide (CSD) and microcrystalline cellulose (MCC). For DLX, the DSC analysis showed a sharp endothermic peak corresponding to the melting process (Tpeak = 168.93°C) and purity determination of 98.74 ± 0.03%. Thermogravimetry (TG) curves revealed a mass loss of approximately 58% during thermal decomposition and the non-isothermal kinetics revealed estimated Ea of 62.73 kJ mol-1 with a reaction order of zero, indicating that DLX thermal decomposition is constant over time, regardless of its concentration. The compatibility results suggest an interaction between DLX and selected excipients (SSG, CS, CSD, MCC) evidenced by the DLX melting point dislocation on the DSC curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Depression and Other Common Mental Disorders: Global Health Estimates, WHO (2017). http://www.who.int/mental_health/management/depression/prevalence_global_health_ estimates/en/.Accessed 15 Apr 2018.

  2. R. DeLucia, R. M. Oliveira-Filho, C. S. Planeta, et al., Farmacologia integrada, 3rd ed., Revinter, Rio de Janeiro (2007).

  3. C. Mencacci, E. Aguglia, G. Biggio, et al., Clinicoecon Outcomes Res., 5, 611 – 621 (2013).

  4. M. Lesley, L. M. Arnold, Pain Med., 8(2), S63-S74 (2007).

    Google Scholar 

  5. A. Darowski, S. C. F. Chambers, D. J. Chambers, Drugs Aging, 26(5), 381 – 394 (2009).

    Article  CAS  Google Scholar 

  6. P. Srinivasulu, K. S. V. Srinivas, R. S. Reddy, et al., Pharmazie, 64, 10 – 13 (2009).

    CAS  PubMed  Google Scholar 

  7. T. J. Moore, D. R. Mattison, JAMA Intern Med., 177(2), 274 – 275 (2017).

    Article  Google Scholar 

  8. V. R. Sinha, Anamika, R. Kumria, et al., J. Chromatogr. Sci., 47, 589 – 593 (2009).

    Article  CAS  Google Scholar 

  9. M. P. Knadler, E. Lobo, J. Chappell, and R. Bergstrom, Clin Pharmacokinet., 50(5), 281 – 294 (2011).

    Article  CAS  Google Scholar 

  10. P. Patel, K. Ahir, V. Patel, et al., Pharma Innov. J., 4(5), 14 – 20 (2015).

  11. D. Giron, Pharm. Sci. Technolo. Today, 1(5), 191 – 199 (1998).

    Article  CAS  Google Scholar 

  12. R. Chadha and S. Bhandari, J. Pharm. Biomed. Anal., 87, 82 – 97 (2014).

    Article  CAS  Google Scholar 

  13. T. Ding, L. Chen, L. H. Zhai, et al., J. Therm. Anal. Calorim., 130(3), 1569 – 1573 (2017).

    Article  CAS  Google Scholar 

  14. I. Ledeti, S. Bolintineanu, G. Vlase, et al., J. Therm. Anal. Calorim., 130(1), 433 – 441 (2017).

    Article  CAS  Google Scholar 

  15. A. Veiga, P. R. Oliveira, L. S. Bernardi, et al., J. Therm Anal Calorim., 131(3), 3201 – 3209 (2017).

  16. L. J. Oliveira, N. C. F. Stofella, A. Veiga, et al., J. Therm Anal Calorim., 133(3), 1521 – 1533 (2018).

  17. United States Pharmacopeia and National Formulary, USP 38-NF 33, Rockville, United States Pharmacopeia Convention (2015).

  18. T. Ozawa, Bull. Chem. Soc., 38, 1881 – 1886 (1965).

    Article  CAS  Google Scholar 

  19. J. H. Flynn and L. A. Wall, J. Res. Natl. Bur. Stand. A: Phys. Chem., 70A(6), 487 – 523 (1966).

  20. F. S. Murakami, L. S. Bernardi, R. N. Pereira, et al., Pharm. Chem. J., 43(12), 716 – 720 (2009).

    Article  CAS  Google Scholar 

  21. B. Tiþa, A. Fulia°, G. Bandur, et al., J. Pharm. Biomed. Anal., 56, 221 – 227 (2011).

  22. M. Douša, P. Gibala, J. Havlíèek, et al., J. Pharm. Biomed. Anal., 55 5), 949 – 956 (2011).

  23. L. A. D. Silva, F. V. Teixeira, R. C. Serpa, et al., J. Therm. Anal. Calorim., 123(3), 2337 – 2344 (2016).

    Article  CAS  Google Scholar 

  24. M. S. Cunha-Filho, R. Martínez-Pacheco, and M. Landín, J. Pharm. Biomed. Anal., 45(4), 590 – 598 (2007).

    Article  CAS  Google Scholar 

  25. K. Liltorp, T. G. Larsen, B.Willumsen, et al., J. Pharm. Biomed. Anal., 55, 424 – 428 (2011).

    Article  CAS  Google Scholar 

  26. F. Monajjemzadeh, D. Hassanzadeh, H. Valizadeh, et al., Eur. J. Pharm. Biopharm., 73(3), 404 – 413 (2009).

    Article  CAS  Google Scholar 

  27. E. Roumeli, A. Tsiapranta, E. Pavlidou, et al., J. Therm. Anal. Calorim., 111, 2109 – 2115 (2013).

    Article  CAS  Google Scholar 

  28. S. Ini, Y. Shmueli, T. Koltai, and A. Gold, Duloxetine Hydrochloride Polymorphs, Patent WO2006081515 A2 (2006).

  29. M. Bhadbhade, J. Hook, C. Marjo, et al, Acta Cryst., E65, o2294 (2009).

  30. C. E. Marjo, M. Bhadbhade, J. M. Hook, and A. M. Rich, Mol. Pharm., 8, 2454 – 64 (2011).

    Article  CAS  Google Scholar 

  31. M. A. Oliveira, Quim. Nova, 34, 1224 – 1230 (2011).

    Article  Google Scholar 

  32. A. P. S. Matos, J. S. Costa, J. Boniatti, et al., J. Therm. Anal. Calorim., 127(2), 1675 – 1682 (2017).

    Article  CAS  Google Scholar 

  33. A. Stimac, R. Jakse, N. Zajc, et al., Crystalline Forms of Duloxetine Hydrochloride and Processes for Their Preparation, Patent EP1820800 A1 (2006).

Download references

Acknowledgments

This study was funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio S. Murakami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiga, A., Stofella, N.C.F., Oliveira, L.J. et al. Thermal Analytical Approaches to Characterization and Compatibility Studies of Duloxetine Hydrochloride. Pharm Chem J 54, 659–666 (2020). https://doi.org/10.1007/s11094-020-02249-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02249-0

Keywords

Navigation