Skip to main content
Log in

Comparative Study of Flow Characteristics Inside Plasma Torch with Different Nozzle Configurations

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A numerical analysis of the influence of different nozzle configurations on the plasma flow characteristics inside D.C plasma torches is presented to provide an advanced nozzle design basis for plasma spraying torches. The assumption of steady-state, axis-symmetric, local thermodynamic equilibrium, and optically thin plasma is adopted in a two-dimensional modeling of plasma flow inside the plasma torch. The PHOENICS software is used for solving the governing equations, i.e. the conservation equations of mass, momentum, and energy along with the equations describing the K-epsilon model of turbulence. The calculated arc voltages are consistent with the experimental results when arc current, gas inflow rate, and working gas are the same as the experimental parameters. Temperature, axial velocity contours inside plasma torches, profiles along the torch axis and profiles at the outlet section are presented to show the plasma flow characteristics. Comparisons are made among those torches. The results show that torches with different anode nozzle configurations produce different characteristics of plasma flows, which suggest some important ideas for the advanced nozzle design for plasma spraying. In order to validate the model and to show its level of predictivity, a comparison of the model with experimental results encountered in the literature is presented in the last part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Pfender Y. C. Lee (1985) Plasma Chem. Plasma Process. 5 211

    Google Scholar 

  • M. P. Fard R. Bhola S. Chandra (1998) Int. J. Heat Mass Transfer. 41 2929

    Google Scholar 

  • Y. C. Lee E. Pfender (1987) Plasma Chem. Plasma Process 7 IssueID1 1

    Google Scholar 

  • R. Mcpherson (1981) Thin Solid Films 83 2997

    Google Scholar 

  • J. Mostaghimi M. P. Fard S. Chandra (2002) Plasma Chem. Plasma Process. 22 IssueID1 59

    Google Scholar 

  • M. P. Fard R. Bhola S. Chandra (1998) Int. J. Heat Mass Transfer. 41 2929

    Google Scholar 

  • M. Bertagnolli M. Marchese G. Jacucci (1995) J. Thermal Spray Tech. 4 41

    Google Scholar 

  • R. L. Williamson J. R. Fincke C. H. Chang (2000) Plasma Chem. Plasma Process. 20 IssueID3 229

    Google Scholar 

  • A. Vardelle P. Fauchais B. Dussoubs et al. (1996) Plasma Chem. Plasma Process. 16 99s

    Google Scholar 

  • C. B. Ang H. W. Ng S. C. M. Yu et al. (2000) Plasma Chem. Plasma Process. 20 IssueID3 325

    Google Scholar 

  • M. Jankovic J. Mostaghimi (1995) Plasma Chem. Plasma Process. 15 IssueID4 607

    Google Scholar 

  • M. Cao F. Gitzhofer D. V. Gravelle et al. (1997) Plasma Sources Sci. Technol. 6 39

    Google Scholar 

  • M. Sabsabi S. Vacquie D.V. Gravelle et al. (1992) J. Phys D: Appl. Phys 25 425–␣

    Google Scholar 

  • K. T. L. Burm W. J. Goedheer D. C. Schram (2001) J. Phys. D: Appl. Phys 34 2000–␣

    Google Scholar 

  • B. E. Launder D. B. Spalding (1972) Lectures in Mathematical Models of Turbulence Academic New York

    Google Scholar 

  • J. Menart J. Heberlein E. Pfender (1996) J. Quant. Spectrosc. Radiat. Transfer. 56 IssueID3 377

    Google Scholar 

  • P. Han X. Chen (2001) Plasma Chem. Plasma Process. 21 IssueID2 249

    Google Scholar 

  • J. D. Yan M. T. C. Fang C. Jones (1997) IEEE Trans. Plasma Sci. 25 IssueID3 840

    Google Scholar 

  • P. Zhu J. J. Lowke R. Morrow (1992) J. Phys. D. 25 1221

    Google Scholar 

  • D. A. Scott P. Kovitya G. N. Haddad (1989) J. Appl. Phys. 66 5232

    Google Scholar 

  • A. H. Dilawari J. Szekely R. Westhoff (1990) ISIJ Int 30 381–␣

    Google Scholar 

  • PHOENICS notes on turbulence modeling.

  • He-Ping Li E. Pfender Xi Chen (2003) J. Phys. D. 36 1084

    Google Scholar 

  • R. Westhoff, 1992, Modelling the non-transferred arc plasma torch and plume for plasma processing, PhD Thesis, Department of Material Sciences and Engineering, M.I.T.

  • A. H. Dilawari J. Szekely J. Batdorf (1990) Plasma Chem. Plasma Process. 10 IssueID2 321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X.Q., Li, H., Zhao, T.Z. et al. Comparative Study of Flow Characteristics Inside Plasma Torch with Different Nozzle Configurations. Plasma Chem Plasma Process 24, 585–601 (2004). https://doi.org/10.1007/s11090-004-7934-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-004-7934-6

Keywords

Navigation