Skip to main content
Log in

A comparative study of conventional type II and inverted core–shell nanostructures based on CdSe and ZnS

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The objective of this work is to investigate structural, morphological and optical properties of conventional CdSe/ZnS core–shell and inverted ZnS/CdSe core–shell nanostructures for opto-electronic device applications. For this purpose both nanostructures were synthesized using chemical bath deposition technique in thin film form. The structural properties were studied using X-ray diffraction technique with Rietveld refinement and transmission electron microscopy (TEM). The surface morphology of synthesized thin film was illustrated in the form 2D and 3D images using atomic force microscopy (AFM). The optical properties were explained using UV–Vis absorption spectroscopy and photo luminescence (PL) spectroscopy in in situ monitoring process. A comparison of estimated particle size from XRD, high resolution AFM and TEM images was resulted in good agreement as 2.1, 2.4 and 2.1 nm respectively for conventional CdSe/ZnS core–shell and as 2.5, 2.5 and 2.2 nm respectively for inverted ZnS/CdSe core–shell nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  ADS  Google Scholar 

  • Coe, S., Woo, W.K., Bawendi, M., Bulovic, V.: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002)

    Article  ADS  Google Scholar 

  • Cullity, B.D.: Elements of X-ray diffraction. In: Cohen, M. (ed.) Structure of Polycrystalline Aggregates, 2nd edn, pp. 284–287. Addison Wesley, Boston (1956)

    Google Scholar 

  • Dickson, R.M.: Three-dimensional imaging of single molecules solvated in pores of poly (acrylamide) gels. Science 274, 966–969 (1996)

    Article  ADS  Google Scholar 

  • Empedocles, S., Bawendi, M.: Spectroscopy of single CdSe nanocrystallites. Acc. Chem. Res. 32, 389–396 (1999)

    Article  Google Scholar 

  • Greenham, N.C., Peng, X.G., Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B. 54, 17628–17637 (1996)

    Article  ADS  Google Scholar 

  • Henglein, A.: Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989)

    Article  Google Scholar 

  • Huynh, W.U., Dittmer, J.J., Libby, W.C., Whiting, G.L., Alivisatos, A.P.: Controlling the morphology of nanocrystal–polymer composites for solar cells. Advan. Funct. Mater. 13, 73–79 (2003)

    Article  Google Scholar 

  • Klimov, V.I.: Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B. 104, 6112–6123 (2000)

    Article  Google Scholar 

  • Liangling, H., Zhao, Y.L., Ryu, K., Zhao, C., Gruner, G.: Light-induced charge transfer in pyrene/CdSe-SWNT hybrids. Adv. Mat. 20, 939–946 (2008)

    Article  Google Scholar 

  • Mazhar, J., Shrivastav, A.K., Nandedkar, R.V., Pandey, R.K.: Strained ZnSe nanostructure investigations by X-ray, AFM TEM and optical absorption lumnisance spectra. Nanotechnology 15, 572–580 (2004)

    Article  ADS  Google Scholar 

  • Niemeyer, C.M.: Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chemie. Inter. Ed. 40, 4128–4158 (2001)

    Article  Google Scholar 

  • Niemeyer, C.M., Ceyhan, B., Hazarika, P.: Oligofunctional DNA–gold nanoparticle conjugates. Angew. Chemie. Inter. Ed. 42, 5766–5770 (2003)

    Article  Google Scholar 

  • Qi, D., Fischbein, M.D., Drndic, M., Selmic, S.: Efficient polymer-nanocrystal quantum-dot photodetectors. App. Phy. Let. 86, 093103 (2005)

    Article  ADS  Google Scholar 

  • Schlamp, M.C., Peng, X.G., Alivisatos, A.P.: Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842 (1997)

    Article  ADS  Google Scholar 

  • Sharma, M., Gupta, D., Kaushik, D., Sharma, A.B., Pandey, R.K.: Study of self-organized CdS Q-dots. J. Nanosci. Nanotech. 8, 4303–4308 (2008)

    Article  Google Scholar 

  • Suzuki, N., Yasuo, T., Kojima, T.: Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Appl. Phys. Lett. 81, 4121–4123 (2002)

    Article  ADS  Google Scholar 

  • Weller, H., Bunsenges, B.: Quantum sized semiconductor particles in solution and in modified layers. Phys. Chem. 95, 1361–1365 (1991)

    Google Scholar 

  • Xie, R.G., Kolb, U., Li, J.X., Basche, T., Mews, A.: Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 127, 7480–7488 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank UGC, DAE-CSR, Indore for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepshikha Rathore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, N., Rathore, D. & Pandey, R.K. A comparative study of conventional type II and inverted core–shell nanostructures based on CdSe and ZnS. Opt Quant Electron 50, 107 (2018). https://doi.org/10.1007/s11082-018-1378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1378-3

Keywords

Navigation