Skip to main content
Log in

Stimulated Raman scattering in weakly polar narrow band-gap magnetized semiconductors in the presence of hot carriers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Using the hydrodynamic model of semiconductor plasmas, a detailed analytical investigation is made to study both the steady-state and transient Raman gain in a weakly polar narrow band-gap magnetized one-component semiconductor, viz. n-InSb under off-resonant laser irradiation. Using the fact that origin of stimulated Raman scattering (SRS) lies in the third-order (Raman) susceptibility (\(\chi_{R}^{(3)}\)) of the medium, we obtained an expression of the threshold pump electric field (\(E_{th}\)), the resulting gain coefficients (steady-state as well as transient \(g_{R,TR}\)) and optimum pulse duration (\(\tau_{p}\)) for the onset of SRS. The application of a strong magnetic field not only lowers \(E_{th}\) but also enhances \(g_{R,TR}\). The carrier heating by the intense pump modifies the electron collision frequency and hence the nonlinearity of the medium which in turn enhances \(g_{R,TR}\) significantly. The enhanced \(g_{TR}\) can be greatly used in the compression of scattered pulses. The results of the present investigation leads to the better understanding of SRS process in solid and gaseous plasmas and also help considerably in filling the existing gap between theory and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anisimov, S.I., Khokhlov V.A.: Instabilities in Laser Matter Interaction (1995) ISBN: 9780849386602

  • Beer, A.C.: Galvanometric Effects in Semiconductors: Solid State Physics, Academic Press, New York (1963)

    Google Scholar 

  • Brueckner, K.A., Jorna, S.: Laser-driven fusion. Rev. Mod. Phys. 46, 325–367 (1974)

    Article  ADS  Google Scholar 

  • Callaway, J.: Quantum Theory of The Solid State, pp. 16–23. Academic Press, New York (1974)

    Google Scholar 

  • Conwell, E.M.: High Field Transport in Semiconductors, pp. 141–159. Academic Press, New York (1967)

    Google Scholar 

  • Drake, J.F., et al.: Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778–785 (1974)

    Article  ADS  Google Scholar 

  • Forslund, D.W., et al.: Nonlinear behaviour of stimulated Brillouin and Raman scattering in laser irradiated plasmas. Phys. Rev. Lett. 30, 739–743 (1973)

    Article  ADS  Google Scholar 

  • Ghosh, S., Dixit, S.: Stimulated Raman scattering and Raman instability of an intense helicon wave in longitudinally magnetized n-type piezoelectric semiconducting plasma. Phys. Status Solidi (B) 131, 255–265 (1985)

    Article  ADS  Google Scholar 

  • Gibbs, H.N.: Optical Bistability: Controlling Light with Light. Academic Press, Orlando (1985)

    Google Scholar 

  • Hanna, D.C., et al.: Nonlinear Optics of Free Atoms and Molecules, pp. 119–123 Springer, Berlin (1979)

    Book  Google Scholar 

  • Kramer, S.D., et al.: Interference of third-order light mixing and second harmonic exciton generation in CuCl. Phys. Rev. B 9, 1853–1856 (1974)

    Article  ADS  Google Scholar 

  • Kruer, M., et al.: In: Glass, A.J., Guenther, A.H. (eds.) Laser Induced Damage in Optical Materials, pp. 473–476. NBS Special Publication No. 509, Washington (1977)

  • Lee, C.H.: In: Lee, C.H. (ed.) Picosecond Optoelectronic Devices, pp. 119–188. Academic, New York (1984)

  • Liu, C.S., et al.: Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas. Phys. Fluids 17, 1211–1219 (1974)

    Article  ADS  Google Scholar 

  • Loree, T.R., et al.: New lines in the UV: SRS of excimer laser wavelengths. IEEE J. Quantum Electron. 15, 337–342 (1979)

    Article  ADS  Google Scholar 

  • Maraghechi, B., Willett, J.E.: Raman backscattering of electromagnetic extraordinary waves in a magnetized inhomogeneous plasma. J. Plasma Phys. 20, 859–865 (1978)

    Article  ADS  Google Scholar 

  • Maraghechi, B., Willett, J.E.: Raman backscattering of circularly polarized electromagnetic waves propagating along a magnetic field. J. Plasma Phys. 21, 163–172 (1979)

    Article  ADS  Google Scholar 

  • Mayer, J.M., et al.: Optical heating in semiconductors. Phys. Rev. B 21, 1559–1568 (1980)

    Article  ADS  Google Scholar 

  • Neogi, A., et al.: Stimulated scattering in magnetooactive semiconductors. Phys. Rev. B 47, 16590–16593 (1993)

    Article  ADS  Google Scholar 

  • Neogi, A., Ghosh, S.: Stimulated Raman scattering in a magnetized centrosymmetric semiconductor. Phys. Rev. B 44, 13074–13077 (1991)

    Article  ADS  Google Scholar 

  • Rothenberg, J.E., et al.: High-resolution extreme ultraviolet spectroscopy of potassium using anti-Stoke’s radiation. Opt. Lett. 6, 363–365 (1981)

    Article  ADS  Google Scholar 

  • Seeger, K.: Semiconductor Physics, pp. 147–183. Springer, Berlin (1989)

    Book  Google Scholar 

  • Sen, P., Sen, P.K.: Theory of stimulated Raman and Brillouin scattering in noncentrosymmetric crystals. Phys. Rev. B 31, 1034–1040 (1985)

    Article  ADS  Google Scholar 

  • Sen, P., Sen, P.K.: Correlation and competition between stimulated Raman and Brillouin scattering processes. Phys. Rev. B 33, 1427–1435 (1986)

    Article  ADS  Google Scholar 

  • Sen, P.K., et al.: Raman instability in n-type piezoelectric semiconductors. Phys. Rev. B 22, 6340–6346 (1980)

    Article  ADS  Google Scholar 

  • Singh, M., Aghamkar, P.: Coherent Brillouin scattering in non-centrosymmetric semiconductors: bound and free charge carriers contribution. J. Mod. Opt. 55, 1251–1265 (2008)

    Article  MATH  Google Scholar 

  • Sodha, M.S., et al.: Self-Focusing of Laser Beams in Dielectrics, Plasmas and Semiconductors, pp. 55–62. Tata McGraw-Hill, New Delhi (1974)

    Google Scholar 

  • Sodha, M.S., et al.: Interaction of intense laser beams with plasma waves: stimulated Raman scattering. J. Appl. Phys. 47, 3518–3523 (1976)

    Article  ADS  Google Scholar 

  • Steele, M.C., Vural, B.: Wave interactions in Solid State Plasmas, pp. 105–112. McGraw Hill, New York (1969)

    MATH  Google Scholar 

  • Sutherlands, R.L.: Handbook of Nonlinear Optics. 2nd edn (revised), pp. 958–968. Dekker, New York (2003)

  • Vonder Linde, D., et al.: Molecular vibrations in liquids: direct measurement of the molecular dephasing time—determination of the shape of picosecond light pulses. Phys. Rev. Lett. 26, 954–957 (1971)

    Article  ADS  Google Scholar 

  • Wang, C.S.: In: Rabin, H., Tang, C.L. (eds.) Quantum Electronics. Vol. 1, Part A, pp. 447–472. Academic, New York (1975)

  • Wherrett, B.S.: In: Wherrett, B.S., Tooley, F.P.A. (eds.) Optical Computing, pp. 1–21. SUSSP, Edinburg (1989)

  • Zeldovich, B.Y., et al.: Principles of Phase Conjugation, pp. 25–65. Springer, Berlin (1985)

    Google Scholar 

Download references

Acknowledgments

One of the authors (M.S.) acknowledges Prof. P. Aghamkar, Department of Physics, Chaudhary Devi Lal University, Sirsa for useful suggestions to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal Singh, V., Singh, M. Stimulated Raman scattering in weakly polar narrow band-gap magnetized semiconductors in the presence of hot carriers. Opt Quant Electron 48, 479 (2016). https://doi.org/10.1007/s11082-016-0686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0686-8

Keywords

Navigation