Skip to main content
Log in

Stretchable photonic crystal design

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We compare numerically two implementations of stretchable photonic crystals embedded in elastic polymers. Our analysis, which classifies the bandgaps according to two simply determined parameters, indicates that such structures exhibit bandgaps that can be readily adjusted by straining the polymer. These properties suggest numerous potential applications such as flexible and tunable waveguiding structures, wavelength switches and resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Augustin, M., Iliew, R., Etrich, C., Setzpfandt, F., Fuchs, H.-J., Kley, E.-B., Nolte, S., Pertsch, T., Lederer, F., Tnnermann, A.: Dispersion properties of photonic crystal waveguides with a low in-plane index contrast. New J. Phys. 8, 210 (2006)

    Article  ADS  Google Scholar 

  • Bienstman, P., Assefa, S., Johnson, S.G., Joannopoulos, J.D., Petrich, G.S., Kolodziejski, L.A.: Taper structures for coupling into photonic crystal slab waveguides. J. Opt. Soc. Am. B 20(9), 1817–1821 (2003)

    Article  ADS  Google Scholar 

  • Eichenfield, M., Camacho, R., Chan, J., Vahala, K.J., Painter, O.: A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009)

    Article  ADS  Google Scholar 

  • Gan, L., Li, Z.: Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices. Front. Optoelec. 5(1), 21–40 (2012)

    Article  Google Scholar 

  • Han, M.G., Shin, C.G., Jeon, S.-J., Shim, H., Heo, C.-J., Jin, H., Kim, J.W., Lee, S.: Full colortunable photonic crystal from crystalline colloidal arrays with anengineered photonic stop-band. Adv. Mater. 24(48), 6438–6444 (2012)

    Article  Google Scholar 

  • Ibanescu, M., Johnson, S.G., Soljacic, M., Joannopoulos, J.D., Fink, Y., Weisberg, O., Engeness, T.D., Jacobs, S.A., Skorobogatiy, M.: Analysis of mode structure in hollow dielectric waveguide fibers. Phys. Rev. E 67, 046608 (2003)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals, Molding the flow of light, Princeton University Press (chapters 5 and 8) (1995)

  • Johnson, S.G., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8221 (2000)

    Article  ADS  Google Scholar 

  • Johnson, S.G., Ibanescu, M., Skorobogatiy, M., Weisberg, O., Engeness, T.D., Soljacic, M., Jacobs, S.A., Joannopoulos, J.D., Fink, Y.: Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9(13), 748–779 (2001)

    Article  ADS  Google Scholar 

  • Lau, W.T., Fan, S.: Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs. Appl. Phys. Lett. 81, 3915–3917 (2002)

    Article  ADS  Google Scholar 

  • Lu, Z., Yin, Y.: Colloidal nanoparticle clusters: functional materials by design. Chem. Soc. Rev 41, 6874–6887 (2012)

    Article  Google Scholar 

  • Mendez, A., Morse, T. (eds.): Specialty Optical Fibers Handbook. Academic Press, New York (2000)

    Google Scholar 

  • Notomi, M., Yamada, K., Shinya, A., Takahashi, J., Takahashi, C., Yokohama, I.: Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87(25), 253902 (2001)

    Article  ADS  Google Scholar 

  • Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)

    Article  ADS  Google Scholar 

  • Song, B.-S., Noda, S., Asano, T., Akahane, Y.: Ultra- high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4(3), 207–210 (2005)

    Article  ADS  Google Scholar 

  • Sugimoto, Y., Tanaka, Y., Ikeda, N., Nakamura, Y., Asakawa, K.: Low propagation loss of 0.76 dB/mm in GaAs-based single-line- defect two-dimensional photonic crystal slab waveguides up to 1 cm in length. Opt. Express 12(6), 1090–1096 (2004)

    Article  ADS  Google Scholar 

  • Vignolini, S., Riboli, F., Intonti, F., Belotti, M., Gurioli, M., Chen, Y., Colocci, M., Andreani, L.C., Wiersma, D.S.: Local nanofluidic light sources in silicon photonic crystal microcavities. Phys. Rev. E 78, 045603 (R) (2008)

  • Wang, H., Zhang, K.-Q.: Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13, 4192–4213 (2013)

    Article  Google Scholar 

  • Wang, K.X., Yu, Z., Liu, V., Raman, A., Cui, Y., Fan, S.: Light trapping in photonic crystals. Energy Environ. Sci. 7, 2725–2738 (2014)

    Article  Google Scholar 

  • Watts, M.R., Johnson, S.G., Haus, H.A., Joannopoulos, J.D.: Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap. Opt. Lett. 27(20), 1785–1787 (2002)

    Article  ADS  Google Scholar 

  • Yang, D., Tian, H., Ji, Y.: Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 19, 20023–20034 (2011)

    Article  ADS  Google Scholar 

  • Yu, C.L., Kim, H., de Leon, N., Frank, I.W., Robinson, J.T., McCutcheon, M., Liu, M., Lukin, M.D., Loncar, M., Park, H.: Stretchable photonic crystal cavity with wide frequency tunability. Nano Lett. 13(1), 248–252 (2013)

    Article  ADS  Google Scholar 

  • Zhu, X., Zhang, Y., Chandra, D., Cheng, S.-C., Kikkawa, J.M., Yang, S.: Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly(dimethylsiloxane) membranes under elastic deformation. Appl. Phys. Lett. 93(16), 161911 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

David Yevick acknowledgements The Natural Sciences and Engineering Research Council of Canada (NSERC) and CIENA are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Othman.

Additional information

This article is part of the Topical Collection on Advanced Materials for photonics and electronics.

Guest Edited by Bouchta Sahraoui, Yahia Boughaleb, Kariem Arof, Anna Zawadzka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A., Yevick, D. Stretchable photonic crystal design. Opt Quant Electron 48, 207 (2016). https://doi.org/10.1007/s11082-016-0478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0478-1

Keywords

Navigation