Skip to main content

Advertisement

Log in

Low energy \(\hbox {Ar}^{+}\)-plasma thinning and thermal annealing of carbon films to few-layered graphene

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Here we present results on the influence of low-energy \(\hbox {Ar}^{+}\) plasma irradiation of different duration and further annealing on highly oriented pyrolytical graphite (HOPG) layers. We used irradiation with a dose of \(10^{15}\;\hbox {Ar}^{+}/\hbox {cm}^{-2}\) intended to impact the upper 1 nm thick layer of the treated film. The influence of \(\hbox {Ar}^{+}\) plasma was evaluated by the results of X-ray powder diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS) studies. It was found that the treatment resulted in 20–30 % increasing of the intensity ratios of G and 2D Raman bands \((\hbox {I}_{\mathrm{2D}}/\hbox {I}_{\mathrm{G}})\) of HOPG layers. Moreover, the full width at a half maximum of the 2D band decreases from 80–90 to 55–60 \(\hbox {cm}^{-1}\). Further thermal annealing at \(270\,^{\circ }\hbox {C}\) for 7 min in air atmosphere additionally enhances the \(\hbox {I}_{\mathrm{2D}}/\hbox {I}_{\mathrm{G}}\) ratio in some cases. The XRD and XPS examinations show a significant thinning of the films and increasing of the content of \(\hbox {sp}^{3}\)-hybridized carbon. The content of C=O functional groups is increased instead of C–O groups during thermal annealing in air atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenko, A.N., Conrad, E.H., First, P.N.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem 108, 19912–19916 (2004)

    Article  Google Scholar 

  • Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91, 063124-1-3 (2007)

    Article  ADS  Google Scholar 

  • Cancado, L.G., Jorio, A., Martins Ferreira, E.H., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)

  • Cong, C., Yu, T., Saito, R., Dresselhaus, G.F., Dresselhaus, M.S.: Second-order overtone and combination Raman modes of graphene layers in the range of \(1690{-}2150\;\text{ cm }^{-1}\). ACS Nano 5, 1600–1605 (2011)

    Article  Google Scholar 

  • Dementjev, A.P., Maslakov, K.I.: Possibilities of C 1s XPS and N(E) C KVV Auger spectroscopy for identification of inherent peculiarities of diamond growth. Appl. Surf. Sci. 253, 1095–1100 (2006)

    Article  ADS  Google Scholar 

  • Fayos, J.: Possible 3D carbon structures as progressive intermediates in graphite to diamond phase transition. J. Sol. St. Chem. 148, 278–285 (1999)

    Article  ADS  Google Scholar 

  • Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–187404 (2007)

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414–075426 (2001)

    Article  ADS  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  • Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)

    Article  Google Scholar 

  • Hassel, O.: J. Solid State Chem. 148, 278–285 (1999)

  • Hazdra, K.S., Rafiee, J., Rafiee, M.A., Mathur, A., Roy, S.S., McLauhglin, J., Koratkar, N., Misra, D.S.: Thinning of multilayer graphene to monolayer graphene in a plasma environment. Nanotechnology 22, 025704 (2011)

    Article  ADS  Google Scholar 

  • ICSD, 31170-ICSD card

  • Lespade, P., Marchand, A., Couzi, M., Cruege, F.: Caracterisation de Materiaux Carbones par Microspectrometrie Raman. Carbon 22, 375–385 (1984)

    Article  Google Scholar 

  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff1, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

  • Lim, W.S., Kim, Y.Y., Kim, H., Jang, S., Kwon, N., Park, B.J., Ahn, J.H., Chung, I., Hong, B.H., Yeom, G.Y.: Atomic layer etching of graphene for full graphene device fabrication. Carbon 50, 429–435 (2012)

    Article  Google Scholar 

  • Malard, L.M., Pimenta, M.A., Dresselhaus, G.F., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    Article  ADS  Google Scholar 

  • Mathew, S., Chan, T.K., Zhan, D., Gopinadhan, K., Roy Barman, A., Breese, M.B.H., Dhar, S., Shen, Z.X., Venkatesan, T., Thong, J.T.L.: Mega-electron-volt proton irradiation on supported and suspended graphene: A Raman spectroscopic layer dependent study. J. Appl. Phys. 110, 084309 (2011)

  • Michaelson, Sh., Hoffman, A.: Hydrogen bonding, content and thermal stability in nano-diamond films. Diam. Rel. Mater. 15, 486–497 (2006)

  • Milenov, T.I.: Chemical-vapour-deposition-initiated growth and characterization of diamond and diamond-like micro-crystals. J. Cryst. Growth 310, 5447–5452 (2008)

    Article  ADS  Google Scholar 

  • Milenov, T.I., Rafailov, P.M., Avdeev, G.V., Thomsen, C.: Chemical vapor deposition of carbon layers on Si \(\{001\}\) substrates. J. Optoelectr. Adv. Mater. 11, 1273 (2009)

    Google Scholar 

  • Nemanich, R.J., Solin, S.A.: First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392–401 (1979)

    Article  ADS  Google Scholar 

  • Ni, Z., Wang, Y., Yu, T., Shen, Z.: Nano Res. 1, 273 (2008)

    Article  Google Scholar 

  • Rao, R., Podila, R., Tsuchikawa, R., Katoch, J., Tishler, D., Rao, A.M., Ishigami, M.: Effects of layer stacking on the combination Raman modes in graphene. ACS Nano 5, 1594–1599 (2011)

    Article  Google Scholar 

  • Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  ADS  Google Scholar 

  • Svensson, S., Eriksson, B., Maartensson, N., Wendin, G., Gelius, U.: Electron shake-up and correlation satellites and continuum shake-off distributions in X-ray photoelectron spectra of the rare gas atoms. J. Electron Spectrosc. Relat. Phenom. 47, 327–384 (1988)

    Article  Google Scholar 

  • Thomsen, C., Reich, S.: Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)

    Article  ADS  Google Scholar 

  • Tinchev, S.S.: Surface modification of diamond-like carbon films to graphene under low energy ion beam irradiation. Appl. Surf. Sci. 258, 2931 (2012)

    Article  ADS  Google Scholar 

  • Tinchev, S.S., Valcheva, E., Petrova, E.: Low temperature crystallization of diamond-like carbon films to graphene. Appl. Surf. Sci. 280, 512 (2013)

    Article  ADS  Google Scholar 

  • Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)

    Article  ADS  Google Scholar 

  • Vo-Van, C., Kimouche, A., Reserbat-Plantey, A., Fruchart, O., Bayle-Guillemaud, P., Bendiab, N., Coraux, J.: Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire. Appl. Phys. Lett. 98, 181903 (2011)

    Article  ADS  Google Scholar 

  • Wang, Y., Ni, Z., Yu, T., Shen, Z., Wang, H., Wu, Y., Chen, W., Wee, A.T.S.: Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637 (2008)

    Article  Google Scholar 

  • Yang, X., Tang, S., Ding, G., Xie, X., Jiang, M., Huang, F.: Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology 23, 025704 (2012)

    Article  ADS  Google Scholar 

  • Zhang, H., Virally, S., Bao, Q., Ping, L.K., Massar, S., Godbout, N., Kockaert, P.: \(Z\)-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37(11), 1856–1858 (2012)

    Article  ADS  Google Scholar 

  • Zhao, G., Shao, D., Chen, Ch., Wang, X.: Synthesis of few-layered graphene by \(\text{ H }_{2}\text{ O }_{2}\) plasma etching of graphite. Appl. Phys. Lett. 98, 183114 (2011)

    Article  ADS  Google Scholar 

  • Zheng, Z., Zhao, C., Lu, S., Chen, Y., Li, Y., Zhang, H., Wen, S.: Microwave and optical saturable absorption in graphene. Opt. Express 20(21), 23201–23214 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from MPNS COST ACTION MP1204—TERA-MIR Radiation: Materials, Generation, Detection and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Milenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milenov, T., Avramova, I., Valcheva, E. et al. Low energy \(\hbox {Ar}^{+}\)-plasma thinning and thermal annealing of carbon films to few-layered graphene. Opt Quant Electron 47, 923–935 (2015). https://doi.org/10.1007/s11082-014-0067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0067-0

Keywords

Navigation