Skip to main content
Log in

Experimental comparison of nonlinear damping performance of toroidal and conventional tuned liquid column dampers

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Conventional tuned liquid column dampers (TLCDs) are deficient in multidirectionality. In contrast, toroidal TLCDs are designed to extend the application to multidirectional vibration control. This article employs real-time hybrid simulation (RTHS) to experimentally investigate the nonlinear damping effects of toroidal and conventional TLCDs in different directions. The RTHS framework consists of toroidal and conventional TLCD models as the physical substructure and a single-degree-of-freedom (SDOF) structure as the numerical substructure. The excitations cover seismic ground motions and harmonic signals. Different structural parameters and peak ground acceleration (PGA) of the ground motions are assigned to the numerical substructure. It is reported that the conventional TLCD has the most remarkable vibration control effect in its main control direction, while it has efficiency loss in other directions. The efficiencies of toroidal TLCD in arbitrary directions are found to be slightly lower to that of convention TLCD in its main control direction. The toroidal TLCD has advantages on omnidirectional damping effects than the conventional TLCD. Lastly, the satisfactory performance of toroidal TLCD under different structural parameters and PGA values confirms the certain robustness of toroidal TLCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The datasets of the current study are available from the corresponding author on reasonable request.

References

  1. Fujino, Y., Sun, L., Pacheco, B.M., Chaiseri, P.: Tuned liquid damper (TLD) for suppressing horizontal motion of structures. J. Eng. Mech. 118(10), 2017–2030 (1992)

    Article  Google Scholar 

  2. Gao, H., Kwok, K., Samali, B.: Optimization of tuned liquid column dampers. Eng. Struct. 19(6), 476–486 (1997)

    Article  Google Scholar 

  3. Warnitchai, P., Pinkaew, T.: Modelling of liquid sloshing in rectangular tanks with flow-dampening devices. Eng. Struct. 20(7), 593–600 (1998)

    Article  Google Scholar 

  4. Tait, M.J.: Modelling and preliminary design of a structure-TLD system. Eng. Struct. 30(10), 2644–2655 (2008)

    Article  Google Scholar 

  5. Zhu, F., Wang, J.T., Jin, F., Lu, L.Q., Gui, Y., Zhou, M.X.: Real-time hybrid simulation of the size effect of tuned liquid dampers. Struct. Control Health Monit. (2017). https://doi.org/10.1002/stc.1962

    Article  Google Scholar 

  6. Chen, Y.H., Hwang, W.S., Tsao, W.H.: Nonlinear dynamic characteristics of rectangular and cylindrical TLDs. J. Eng. Mech. 144(9), 06018004 (2018). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001510

    Article  Google Scholar 

  7. Dziedziech, K., Staszewski, W.J., Ghosh, A., Basu, B., Uhl, T.: Characterisation of instantaneous dynamic parameters in vibration analysis of tuned liquid column dampers. Nonlinear Dyn. 90, 717–731 (2017)

    Article  Google Scholar 

  8. Hitchcock, P., Kwok, K., Watkins, R., Samali, B.: Characteristics of liquid column vibration absorbers (LCVA)-I. Eng. Struct. 19(2), 126–134 (1997)

    Article  Google Scholar 

  9. Hitchcock, P., Kwok, K., Watkins, R., Samali, B.: Characteristics of liquid column vibration absorbers (LCVA)-II. Eng. Struct. 19(2), 135–144 (1997)

    Article  Google Scholar 

  10. Wu, J.C., Shih, M.H., Lin, Y.Y., Shen, Y.C.: Design guidelines for tuned liquid column damper for structures responding to wind. Eng. Struct. 27(13), 1893–1905 (2005)

    Article  Google Scholar 

  11. Wu, J.C., Wang, Y.P., Lee, C.L., Liao, P.H., Chen, Y.H.: Wind-induced interaction of a non-uniform tuned liquid column damper and a structure in pitching motion. Eng. Struct. 30(12), 3555–3565 (2008)

    Article  Google Scholar 

  12. Wu, J.C., Wang, Y.P., Chen, Y.H.: Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion. Smart Struct. Syst. 9(2), 165–188 (2012)

    Article  Google Scholar 

  13. Wu, J.C., Chang, C.H., Lin, Y.Y.: Optimal designs for non-uniform tuned liquid column dampers in horizontal motion. J. Sound Vib. 326(1–2), 104–122 (2009)

    Article  Google Scholar 

  14. You, J.Y., You, K.P., Kim, Y.M.: Evaluation on aerodynamic across-wind response for a tall building using tuned liquid column damper. Adv. Mater. Res. 919–921, 1361–1370 (2014)

    Article  Google Scholar 

  15. Shum, K.M., Xu, Y.L., Guo, W.H.: Wind-induced vibration control of long span cable-stayed bridges using multiple pressurized tuned liquid column dampers. J. Wind Eng. Ind. Aerodyn. 96(2), 166–192 (2008)

    Article  Google Scholar 

  16. Park, S., Glade, M., Lackner, M.: Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of a floating offshore wind turbine. Eng. Struct. 209, 110260 (2020)

    Article  Google Scholar 

  17. Sonmez, E., Nagarajaiah, S., Sun, C., Basu, B.: A study on semi-active tuned liquid column dampers (sTLCDs) for structural response reduction under random excitations. J. Sound Vib. 362, 1–15 (2016)

    Article  Google Scholar 

  18. Yalla, S.K., Kareem, A.: Semiactive tuned liquid column dampers: experimental study. J. Struct. Eng. 129(7), 960–971 (2003). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(960)

    Article  Google Scholar 

  19. La, V.D., Adam, C.: General on-off damping controller for semi-active tuned liquid column damper. J. Vib. Control 24(23), 5487–5501 (2018). https://doi.org/10.1177/1077546316648080

    Article  MathSciNet  Google Scholar 

  20. Altay, O., Klinkel, S.: A semi-active tuned liquid column damper for lateral vibration control of high-rise structures: theory and experimental verification. Struct. Control Health Monit. (2018). https://doi.org/10.1002/stc.2270

    Article  Google Scholar 

  21. Min, K.W., Kim, J., Kim, Y.W.: Design and test of tuned liquid mass dampers for attenuation of the wind responses of a full scale building. Smart Mater. Struct. 23(4), 045020 (2014)

    Article  Google Scholar 

  22. Rozas, L., Boroschek, R., Tamburrino, A., Rojas, M.: A bidirectional tuned liquid column damper for reducing the seismic response of buildings. Struct. Control Health Monit. 23(4), 621–640 (2016)

    Article  Google Scholar 

  23. Coudurier, C., Lepreux, O., Petit, N.: Modelling of a tuned liquid multi-column damper. Application to floating wind turbine for improved robustness against wave incidence. Ocean Eng. 165, 277–292 (2018)

    Article  Google Scholar 

  24. Ding, H., Wang, J.T., Lu, L.Q., Zhu, F.: A toroidal tuned liquid column damper for multidirectional ground motion-induced vibration control. Struct. Control Health Monit. (2020). https://doi.org/10.1002/stc.2558

    Article  Google Scholar 

  25. Mehrkian, B., Altay, O.: Mathematical modeling and optimization scheme for omnidirectional tuned liquid column dampers. J. Sound Vib. 484, 115523 (2020)

    Article  Google Scholar 

  26. Ghosh, A., Basu, B.: Seismic vibration control of nonlinear structures using the liquid column damper. J. Struct. Eng. 134(1), 146–153 (2008). https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(146)

    Article  Google Scholar 

  27. Shum, K.: Closed form optimal solution of a tuned liquid column damper for suppressing harmonic vibration of structures. Eng. Struct. 31(1), 84–92 (2009). https://doi.org/10.1016/j.engstruct.2008.07.015

    Article  Google Scholar 

  28. Bhattacharyya, S., Ghosh, A., Basu, B.: Nonlinear modeling and validation of air spring effects in a sealed tuned liquid column damper for structural control. J. Sound Vib. 410, 269–286 (2017). https://doi.org/10.1016/j.jsv.2017.07.046

    Article  Google Scholar 

  29. Lin, S.M.: Nonlinear vibration control of a tall structure with tuned liquid column damper. Mech. Adv. Mater. Struct. 23(2), 146–155 (2016). https://doi.org/10.1080/15376494.2014.949920

    Article  Google Scholar 

  30. Di Matteo, A., Di Paola, M., Pirrotta, A.: Innovative modeling of tuned liquid column damper controlled structures. Smart Struct. Syst. 18(1), 117–138 (2016)

    Article  Google Scholar 

  31. Ding, H., Wang, J., Lu, L., Pan, J.: Parameter optimization of toroidal tuned liquid column dampers for suppressing multi-directional harmonic vibration of structures. Eng. Optim. (2020). https://doi.org/10.1080/0305215X.2020.1849174

    Article  Google Scholar 

  32. Nakashima, M., Kato, H., Takaoka, E.: Development of real-time pseudo dynamic testing. Earthq. Eng. Struct. Dyn. 21(1), 79–92 (1992)

    Article  Google Scholar 

  33. Nakashima, M.: Hybrid simulation: an early history. Earthq. Eng. Struct. Dyn. (2020). https://doi.org/10.1002/eqe.3274

    Article  Google Scholar 

  34. Zhu, F., Wang, J., Jin, F., Zhou, M., Gui, Y.: Simulation of large-scale numerical substructure in real-time dynamic hybrid testing. Earthq. Eng. Eng. Vib. 13(4), 599–609 (2014)

    Article  Google Scholar 

  35. Wang, J., Gui, Y., Zhu, F., Jin, F., Zhou, M.: Real-time hybrid simulation of multi-story structures installed with tuned liquid damper. Struct. Control Health Monit. 23(7), 1015–1031 (2016). https://doi.org/10.1002/stc.1822

    Article  Google Scholar 

  36. Zhu, F., Wang, J., Jin, F., Lu, L.: Control performance comparison between tuned liquid damper and tuned liquid column damper using real-time hybrid simulation. Earthq. Eng. Eng. Vib. 18(3), 695–701 (2019)

    Article  Google Scholar 

  37. Zhang, Z., Basu, B., Nielsen, S.R.: Real-time hybrid aeroelastic simulation of wind turbines with various types of full-scale tuned liquid dampers. Wind Energy 22(2), 239–256 (2019). https://doi.org/10.1002/we.2281

    Article  Google Scholar 

  38. Zhang, Z., Staino, A., Basu, B., Nielsen, S.R.: Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing. Eng. Struct. 126, 417–431 (2016). https://doi.org/10.1016/j.engstruct.2016.07.008

    Article  Google Scholar 

  39. Zhu, F., Wang, J., Jin, F., Lu, L.: Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures. Eng. Struct. 138, 74–90 (2017)

    Article  Google Scholar 

  40. Zhu, F., Wang, J., Jin, F., Lu, L.: Seismic performance of tuned liquid column dampers for structural control using real-time hybrid simulation. J. Earthq. Eng. 20(8), 1370–1390 (2016). https://doi.org/10.1080/13632469.2016.1138170

    Article  Google Scholar 

  41. Nguyen, T.T., Dao, T.N., Aaleti, S., van de Lindt, J.W., Fridley, K.J.: Seismic assessment of a three-story wood building with an integrated CLT-lightframe system using RTHS. Eng. Struct. 167, 695–704 (2018)

    Article  Google Scholar 

  42. Jiang, Z., Christenson, R.: A comparison of 200 kN magneto-rheological damper models for use in real-time hybrid simulation pretesting. Smart Mater. Struct. (2011). https://doi.org/10.1088/0964-1726/20/6/065011

    Article  Google Scholar 

  43. Jiang, Z., Kim, S.J., Plude, S., Christenson, R.: Real-time hybrid simulation of a complex bridge model with MR dampers using the convolution integral method. Smart Mater. Struct. (2013). https://doi.org/10.1088/0964-1726/22/10/105008

    Article  Google Scholar 

  44. Chen, P.C., Dong, M.W., Chen, P.C., Nakata, N.: Stability analysis and verification of real-time hybrid simulation using a shake table for building mass damper systems. Front. Built Environ. 6, 109 (2020). https://doi.org/10.3389/fbuil.2020.00109

    Article  Google Scholar 

  45. Gui, Y., Wang, J., Jin, F., Chen, C., Zhou, M.: Development of a family of explicit algorithms for structural dynamics with unconditional stability. Nonlinear Dyn. 77(4), 1157–1170 (2014)

    Article  MathSciNet  Google Scholar 

  46. Wallace, M., Wagg, D., Neild, S.: An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring. Proc. R. Soc. Lond. A 461, 3807–3826 (2005)

    MathSciNet  MATH  Google Scholar 

  47. Ali Goudarzi, M., Reza Sabbagh-Yazdi, S.: Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dyn. Earthq. Eng. 43, 355–365 (2012). https://doi.org/10.1016/j.soildyn.2012.08.001

    Article  Google Scholar 

  48. Das, A., Maity, D., Bhattacharyya, S.K.: Characterization of liquid sloshing in U-shaped containers as dampers in high-rise buildings. Ocean Eng. (2020). https://doi.org/10.1016/j.oceaneng.2020.107462

  49. Sanapala, V., Rajkumar, M., Velusamy, K., Patnaik, B.: Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container. J. Fluids Struct. 76, 229–250 (2018). https://doi.org/10.1016/j.jfluidstructs.2017.10.001

    Article  Google Scholar 

  50. Sun, C.: Mitigation of offshore wind turbine responses under wind and wave loading: considering soil effects and damage. Struct. Control Health Monit. (2018). https://doi.org/10.1002/stc.2117

    Article  Google Scholar 

  51. Sun, C.: Semi-active control of monopile offshore wind turbines under multi-hazards. Mech. Syst. Signal Process. 99(15), 285–305 (2018)

    Article  Google Scholar 

  52. Nagarajaiah, S., Sonmez, E.: Structures with semiactive variable stiffness single/multiple tuned mass dampers. J. Struct. Eng. 133(1), 67–77 (2007)

    Article  Google Scholar 

  53. Dogruer, C., Pirsoltan, A.K.: Active vibration control of a single-stage spur gearbox. Mech. Syst. Signal Process. 85, 429–444 (2017). https://doi.org/10.1016/j.ymssp.2016.08.032

    Article  Google Scholar 

  54. Gupta, V., Sharma, M., Thakur, N.: Active structural vibration control: robust to temperature variations. Mech. Syst. Signal Process. 33, 167–180 (2012). https://doi.org/10.1016/j.ymssp.2012.07.009

    Article  Google Scholar 

  55. Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. NREL Technical Report (2009). https://doi.org/10.2172/947422

  56. Guo, Y.L., Kareem, A., Ni, Y.Q., Liao, W.Y.: Performance evaluation of canton tower under winds based on full-scale data. J. Wind Eng. Ind. Aerodyn. 104–106, 116–128 (2012)

    Article  Google Scholar 

  57. Longarini, N., Zucca, M.: A chimney’s seismic assessment by a tuned mass damper. Eng. Struct. 79(15), 290–296 (2014)

    Article  Google Scholar 

  58. Lupi, F., Niemann, H.J., Höffer, R.: A novel spectral method for cross-wind vibrations: application to 27 full-scale chimneys. J. Wind Eng. Ind. Aerodyn. 171, 353–365 (2017)

    Article  Google Scholar 

  59. Yue, H., Chen, J., Xu, Q.: Sloshing characteristics of annular tuned liquid damper (ATLD) for applications in composite bushings. Struct. Control Health Monit. 25(8), e2184 (2018)

    Article  Google Scholar 

  60. Yue, H., Chen, J., Xu, Q.: Optimal design of multiple annular tuned liquid dampers for seismic reduction of 1,100-kV composite bushing. Struct. Control Health Monit. 26(4), e2316 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China (Nos. 51725901 and 51639006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ting Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Wang, JT., Lu, LQ. et al. Experimental comparison of nonlinear damping performance of toroidal and conventional tuned liquid column dampers. Nonlinear Dyn 104, 3365–3384 (2021). https://doi.org/10.1007/s11071-021-06552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06552-7

Keywords

Navigation