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Abstract The simplest model with which to examine the dynamics of the human

eye consists of a rigid body which is free to rotate about a fixed point. Two classical

laws governing monocular vision, which are known as Listing’s law and Donders’ law,

can be enforced in this model using a single holonomic constraint. While there has

been considerable attention paid to the kinematics of the eye, the dynamics of the eye

predicted by rigid body models has not received the same level of attention. In the

present paper, the unforced dynamics of the resulting rigid body model are examined

with particular emphasis placed on the geodesics of the configuration manifold. A

comprehensive portrait of these motions is presented, and the insight gained is related

to the dynamics of the gaze direction and saccadic motions of the eye. Among our

results, we find that modeling the eye as an asymmetric rigid body produces a non-

integrable system of governing equations and that the geodesics on the configuration

manifold provide a wealth of potential motions for the gaze direction.
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1 Introduction

The eye is a remarkable dynamical system capable of performing rapid coordinated

movements. The groundwork on the kinematics of the eye were established by several

researchers in the 1800s and synthesized and publicized in the influential treatise by

Helmholtz [12] which first appeared in 1867 (see [6,38,45] for comprehensive historical

reviews and perspectives). Helmholtz’s treatise, and particularly its sections on the

movement of the eye, along with the development of technologies to measure the in

vivo rotation of the eye [34], helped fuel a renaissance in the topic in the latter part of

the 20th century. Among others, experimental measurements of the saccadic motions

of the eye were obtained, new insights into the ocular motor control system were found,

and Listing’s classical law was extended from monocular vision to binocular vision (see

[6,22]).

Concomitant with the work on kinematics, several researchers started developing

models for the dynamics of the eye. These models started in the 1970s with the work of

Robinson [25,35] and has lead to models where the muscles are modeled with improved

fidelity, such as [33,43], models for a robotic eye by Cannata and Maggiali [2] and a rigid

body model with generalized control torques by Ghosh et al. [7,8,31]. The resulting

models can be combined with control strategies to gain a deeper understanding of how

the brain controls the ocular system and enables vision.

In addition to an elaborate muscle architecture (see [5,24]), models for the eye must

accommodate Listing’s law (after J. B. Listing (1808–1882)). As described by Ruete in

1853, this law states that the rotation of the eye from a specific orientation of the gaze

direction (which is known as the primary position) to a current position is achieved

by a rotation about an axis that is normal to the primary and current positions of

the gaze direction (see Figure 1). Listing’s law has several important implications for

the kinematics of the eye, the most well known of which are Donders’ law, Listing’s

half-angle rule, and Helmholtz’s theorem. While these implications are discussed in

Helmholtz’s masterful treatise, his treatment is not easy to follow and this is partially

responsible for the wide range of reviews [9,32,45] and alternative treatments [13,16,

18,20,44] on the kinematics of the eye that have been produced.

While Helmholtz used Euler angle parameterizations of the eye’s rotation, several

features of the kinematics of the eye become more transparent using other parame-

terizations. In particular, nearly a century after Helmholtz’s treatise was published,

Westheimer [44] showed how parameterizations of the rotation of the eye using quater-

nions lead to the simplest possible representation for Listing’s law. His work formed

part of the foundation for Tweed, Villis and their coworkers pioneering work on measur-

ing saccadic motions of the eye [4,40,41,42]. Among the notable experimental results

found by Tweed, Vilis and their coworkers, they reported in [40, p. 106] that a type

of rapid movement of the eye known as a saccade could be approximated by rotations

with a fixed axis and, consequently, could be considered a geodesics on the subgroup of

rotations SO(3) which satisfy Listing’s law. In the context of eye movements, Hepp [13,

14] subsequently explored the topic of geodesics on SO(3) and during the past decade

Ghosh et al. [7,8,31] examined the topic of geodesics on SO(3) subject to Listing’s

law.

Our work complements (and illuminates) the aforementioned works on geodesics

by establishing new results for the motion of the gaze direction corresponding to the

geodesics. We do this by leveraging an earlier work by O’Reilly and Payen [29] on rigid

body motions that have constant angular velocities. For instance, we are able to show
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Fig. 1 Reference configuration and present configuration of the rigid body modeling the eye
where the gaze direction is assumed to be parallel to e1. The image of the present configuration
emphasizes the observation that, following Listing’s law, the axis of rotation r lies on the
intersection of the E2 −E3 and e2−e3 planes. The former plane is known as Listing’s plane
L and the latter is known as the focal plane F . In ophthalmology, the reference configuration is
known as the primary position and the present configuration is known as a secondary position.

that because the geodesics for one model of the eye are motions with a fixed axis of

rotation, Helmholtz’s theorem [12, p. 79] and a recent work by Hess [15] can be used

to establish a simple framework for saccadic motions of the eye. We also explore this

framework when more elaborate models of the eye are used which don’t assume that

the eye is a (spherically) symmetric rigid body.

We find that the geodesic motions depend on the rigid body model for the eye. If

we relax the assumption that the eye is modeled as a symmetric rigid body, then the

nature of the geodesics change. Specifically, if we assume that the eye is an asymmetric

rigid body, then the resulting model is non-integrable and the motions of the gaze

direction corresponding to the geodesics are typically motions without a fixed axis of

rotation. From the perspective of rigid body dynamics, the non-integrability of the eye

model we find when the rigid body is modeled as an asymmetric rigid body is unusual.

In particular, if we remove the holonomic constraint that is used to impose Listing’s

law, then we simply have the classical (completely integrable) problem of torque-free

motion of a rigid body. Typically, when we impose a holonomic constraint that is not

an explicit function of time, then we expect that the integrability of the unconstrained

system will be preserved in its constrained counterpart. However, this is not the case

with Listing’s law.

An outline of the paper is as follows. In Section 2 of the paper, we recall represen-

tations for the rotation tensor of the eye which accommodate Listing’s law and present

some new perspectives of this classical law which have implications for experimental

measurements (see (4) and (5) below). Listing’s law is predated by a law due to Don-

ders that pertains to the rotation of the eye about the gaze direction. Donders’ law

is discussed in Section 3 in a manner which completes some of the earlier numerical
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results found in Helmholtz [12, p. 49] and clarifies some remarks made by Lamb [20]

pertaining to the path traced by the gaze direction on the unit sphere.

Two distinct rotations feature prominently in the kinematics of the eye. The first

rotation R(t) is the one from the primary position to the current configuration at time

t and the second is the rotation G (t, t0) = R(t)RT (t0) from an earlier configuration

at time t0 to the current configuration at time t. Both R (t) and G (t, t0) have the

same ω and ω̇ but not necessarily the same axis of rotation [29]. Because of Listing’s

law, both ω (t) and ω̇ (t) lie on a plane known as the velocity plane V (t). As shown in

Section 4, Listing’s law also has some (new) unusual implications for the components

of ω and ω̇ (see (17) and (18) below). We then discuss, in Section 5, Listing’s half-angle

rule which states that G (t, t0) has an axis of rotation that lies both on V (t) and V (t0).

In Section 6, the equations of motion for a simple model for the eye are presented.

Just as there is much to be gained by using several distinct representations for the ro-

tation of the eye, we find it useful to use three different formulations for the equations

of motion. Once these formulations have been presented we then turn to the simplest

case of a symmetric model for the eye in Section 7 and show that the equations of

motion are completely integrable and simplify to the case ω̇ = 0. As a result, we are

able to exploit the characterization of the attitudes of constant angular velocity mo-

tions in O’Reilly and Payen [29] to obtain a complete characterization of the spherical

indicatrices of the gaze direction. We find a wealth of motions of the gaze direction all

of which have constant axes of rotation in the velocity plane. Motivated by the recent

work of Hess [15], we also find that we can use these motions to construct arbitrary

motions of the gaze direction (or saccades) provided muscle innervation is present at

certain discrete events. Furthermore, an alternative proof of Helmholtz’s theorem [12,

p. 79] follows trivially by inspection of a phase portrait.

As discussed in Section 8, the dynamics of the eye becomes more complex when we

move from the symmetric case. Indeed we find for the asymmetric rigid body model

that the equations of motion are non-integrable and the motions of the gaze direction

corresponding to the geodesics defy the classification possible for the symmetric case.

The paper closes in Section 9 with a discussion of future applications for the results

presented in this paper.

Following Gibbs, we make extensive use of tensors to represent rotations and this

enables us to readily establish some classical results pertaining to the kinematics of the

eye as well as to shed light on some new results. For instance, this notation enables us

to easily establish the identity (A.5) that leads to additional insight into Listing’s law.

For ease of exposition, the reader is referred to Appendix A where relevant background

on rotations and angular velocities along with quaternion and Euler angle parameter-

izations of rotations are presented.

2 Kinematics of the Eye and Listing’s Law

We model the eye as a rigid body which is free to rotate about a point O which is

fixed in the head (cf. Figure 1). A fixed reference configuration for the eye can be

defined with the help of a fixed right-handed orthogonal basis {E1,E2,E3}. In this

configuration the gaze direction is identified with the vector E1 pointing forward and

E3 pointing vertically upwards. The vector E2 points to the left (right) for the left

(right) eye. In the literature on the eye, the reference configuration we have described

is known as the primary position.
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Because the point O is fixed, the motion of the eye is purely rotational. To describe

the rotation of the eye from one configuration to another, a rotation tensor is used.

Thus, the rotation of the eye from the primary position to its present configuration at

time t is defined by the rotation tensor R:

ek = REk, (k = 1, 2, 3) , (1)

where {e1, e2, e3} is a right-handed orthogonal basis that corotates with the eye. The

rotation tensor depends both on the present configuration and the choice of reference

configuration. In particular, if we change the latter, then R will change. Using a tensor

notation for R highlights the dependency of R on the choice of {E1,E2,E3} and also

explains the emphasis on the primary position in the literature on kinematics of the

eye where tensorial notations have to date not been used.

The rotation tensor R can be parameterized by an axis of rotation r and an angle

of rotation θ. Equivalently, it can be parameterized by a unit quaternion (q0,q) where

q0 = cos
(

θ
2

)

and q = sin
(

θ
2

)

r. The vector e1 defines the gaze direction of the eye (cf.

Figure 1). It is convenient at this stage to recall that the plane spanned by E2 and E3

which passes through O is known as Listing’s plane L and the plane spanned by e2
and e3 which passes through O is known as the focal plane F .

Following [12, p. 48], in its original form Listing’s law states that the axis of rotation

r of R is orthogonal both to the primary position E1 of the gaze direction and the

position of the gaze direction e1 = RE1 at time t. That is,

r ·E1 = 0 and r · e1 = 0. (2)

However, r is unusual in that it has the same components in both the fixed and coro-

tational bases (cf. (A.5)) and so, in general, r has the representations

r =

3
∑

k=1

rkEk =

3
∑

k=1

rkek. (3)

So imposing (2) and noting that q = sin
(

θ
2

)

r, we conclude that

r = r2E2 + r3E3 = r2e2 + r3e3,

q = q2E2 + q3E3 = q2e2 + q3e3. (4)

Thus, as a consequence of (3), Listing’s law can be expressed in a variety of equivalent

manners featuring one component of either r or q:

q · E1 = 0, or r ·E1 = 0, or q · e1 = 0, or r · e1 = 0. (5)

From a geometrical perspective, we can also immediately conclude that the axis of

rotation of R lies on the line of intersection of the focal plane and Listing’s plane (cf.

Figure 1). We also note that the identities (3) have relevance to several experimental

works on eye movements where the components θr · Ek of the rotation vector as in

Hess [15], or q ·Ek, as in Tweed et al. [40], are presented.

We now follow Westheimer [44] and examine the quaternion parameterization of a

rotation R which satisfies Listing’s law (5). To proceed we use (A.2) and (A.6), and
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Fig. 2 Schematic showing Listing’s plane L and the angles ψ and θ which can be used to
parameterize R. Both sets of orthonormal vectors {E2,E3} and

{

r, eψ
}

span L.

find that it is prudent to introduce a second angle ψ in addition to the angle of rotation

θ:1

q0 = cos

(

θ

2

)

,

q1 = 0,

q2 = sin

(

θ

2

)

cos(ψ),

q3 = sin

(

θ

2

)

sin(ψ). (6)

This is the most general representation for (q0,q) that is compatible with Listing’s

law.

Referring to Figure 2, in order to provide additional insight into the angles ψ and

θ, it is convenient to define a vector eψ which lies in Listing’s plane and is normal to

r:

r = cos (ψ)E2 + sin (ψ)E3, eψ = cos (ψ)E3 − sin (ψ)E2. (7)

Substituting for (q0,q) from (6) into (A.6), representations for the components Rik of

R can be found. Three of these components can then be used to examine the parame-

terization of the path of the gaze direction e1(t):

e1 = cos (θ)E1 − sin (θ) eψ

= cos (θ)E1 + sin (θ)
(

cos
(

ψ − π

2

)

E2 + sin
(

ψ − π

2

)

E3

)

. (8)

1 In his seminal paper Westheimer [44] uses the angles c and ω to parameterize the quater-
nion. The correspondence between his notation and ours is as follows: ω = θ, sin(c) = cos(ψ)
and cos(c) = sin(ψ). We note for completeness that in the notation of Tweed and Vilis and
their coworkers [4,40,41,42]: qV = q ·E2, qH = q ·E3, and qT = q · E1.
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When the unit vector e1 is expressed in the second manner shown above it becomes

apparent that θ is the colatitude and ψ− π
2 is the azimutal coordinate for the spherical

locus of e1 (cf. Figure 1). We also note that

E1 × e1 = sin (θ) r. (9)

Because E1 is normal to Listing’s plane and e1 is normal to the focal plane, the result

that E1 × e1 = sin (θ) r can be considered as an alternative proof that the axis of

rotation r lies on the intersection of Listing’s plane and the focal plane.

It is convenient to establish expressions for ei in terms of the angles θ and ψ that

were used to parameterize q0 and q. Substituting (6) into (A.6) and collecting terms,

we find the following illuminating representation:





e1
e2
e3



 =





1 0 0

0 cos(ν) − sin(ν)

0 sin(ν) cos(ν)









cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)









1 0 0

0 cos (ν) sin (ν)

0 − sin (ν) cos (ν)









E1

E2

E3



 ,

(10)

where

ν = ψ − π

2
. (11)

This representation enables an easy comparison of the quaternion representation fea-

turing θ and ψ and an Euler angle representation.

2.1 Representation of Listing’s Law in terms of a 1-2-1 Euler Angle Parameterization

The rotation tensor can also be parameterized using a set of 1-2-1 Euler angles:

θ1, θ2, θ3. Details on this set of angles can be found in Appendix A. With the as-

sistance of (A.9)2, we find an expression for q1 = q · e1 = q ·E1 in terms of this set of

Euler angles:

q1 = cos

(

θ2
2

)

sin

(

θ1
2

+
θ3
2

)

. (12)

Now Listing’s law implies that q1 = 0. So, after considering the ranges of the two

Euler angles θ1 and θ2, one finds that Listing’s law can be expressed in a simple form

(equivalent to the one found in Helmholtz [12, p. 75, Eq. (2a)]):

θ1 + θ3 = 0. (13)

Thus given any gaze direction (defined by θ1,2 (cf. (A.8)) there is a unique given angle

θ3 = −θ1. It is easy to see from (10) that the condition θ3 = −θ1 is identical to (11).

Indeed we can identify ψ and θ with the Euler angles θ1 and θ2 respectively, provided

θ is restricted to range from 0 to π.

3 Listing’s Law implies Donders’ Law

Torsion of the eye, or ocular torsion, is the rotation of the eye about the direction

of gaze (i.e., the e1 axis). Measuring this rotation is challenging [17,19] and, just as

in the development of theories for deformable elastic rods (cf. [1,10,23]), the term

“torsion” can be confusing. From a historical perspective it is interesting to note that

this confusion both in continuum mechanics and ophthalmology can be traced to the
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Fig. 3 Representations of the solution φ3 of the (14) as a function of the Euler angles φ1
and φ2. The figure shows that given an orientation of the gaze direction then a corollary of
Listing’s law implies that there is a unique value of φ3. In (a): i: φ2 = π/16, ii: φ2 = π/8,
iii: φ2 = π/4, iv: φ2 = π/2, v: φ2 = 3π/4, vi: φ2 = 7π/8, vii: φ2 = 15π/16, and viii φ2 = π.

early part of the 19th century when applications of the differential geometry of space

curves and the parameterizations of rotations were starting to multiply.

Donders’ law pertains to torsion of the eye and can be stated as follows for every

orientation of the line of sight, there is a unique orientation of the eye. In other words, if

the line of sight (fixation/gaze) e1 is known, then so too are e2 and e3. This law predates

Listing’s law and it is not immediately apparent how motions which satisfy Listing’s

law can also satisfy Donders’ law. For example, following Lamb [20], consider a motion

where the gaze direction e1 describes a closed path on the sphere and returns to its

original orientation. If e2 (or equivalently e3) does not return to its original orientation,

then the motion of the eye is in violation of Donders’ law. However, examining all

possible motions of the eye compatible with Listing’s law and computing this net

rotation is prohibitive.2 Instead, we follow (and provide additional insight and results

into) a straightforward approach that follows Helmholtz [12] who used a set of 3-2-1

Euler angles to parameterize the rotation of the eye. With this parameterization, the

gaze direction is uniquely prescribed by the first two angles φ1 and φ2. The third angle,

φ3 can then be used to describe the relative rotation of e2 and e3 about e1 [27]. In

other words, the angle φ3 describes ocular torsion (or as it is sometimes known rolling

movement of the eye because the iris appears to roll on the sclera). If a motion of

the eye is in agreement with Donders’ law, then for each pair of values (φ1, φ2), there

corresponds a single value of φ3. In this case, the net rotation about e1 (i.e., the change

in φ3) during a motion where this vector describes a closed path on the sphere and

returns to its original orientation is zero.

The representation of Listing’s law using the 3-2-1 set of Euler angles is not as

transparent as that provided by a 1-2-1 set of Euler angles. To start, we impose Listing’s

law by setting q1 = 0 in (A.11) and then invoke multiple trigonometric identities to

2 The techniques needed to examine such a relative rotation are identical to those used to
examine total twist in rods and also involve geometric phases [1,10,23,27].



9

find the known result:3

tan (φ3) =
sin (φ1) sin (φ2)

cos (φ1) + cos (φ2)
. (14)

That is, Listing’s law is equivalent to the statement that the 3-2-1 set of Euler angles

are related by (14). Motions of the gaze direction where φ1 = 0 or φ2 = 0 are known

as tertiary motions. For these motions, the gaze direction either moves up and down

or from left to right, and we can easily see from (14) that φ3 = 0. For other motions,

we need to solve (14) numerically to find the value of φ3 for a given pair φ1 and φ2
that is compatible with Listing’s law. These numerical results are shown in Figure 3,

and they show that for each pair φ1 and φ2, and consequently, each orientation of the

gaze direction, there is a unique value of φ3 compatible with (14).4 The results shown

in Figure 3 also illuminate why the angle φ3 is sometimes known as “false torsion” (cf.

[26, p. 547]): for most orientations of the gaze direction φ3 6= 0. On the basis of the

numerical results shown in Figure 3, we conclude (the known result) that Donders’ law

is a consequence of Listing’s law.

(a) (b)

θ

θ

ψ inc.

φ1 = 2.96φ1 = 3.31

φ1 = 5.78 φ1 = 0.5

(φ2 = 0, φ3 = 0)

(φ2 = π, φ3 = π)

(θ = 0, φ3 = 0)

(θ = π, φ3 = 0)

Torus coordinatesTorus coordinates

φ2

φ2

φ3

φ3

φ3

φ3

Fig. 4 Representations on a torus of (a) the solution φ3 of the (14) as a function of the
Euler angles φ1 and φ2 and (b) the solution φ3 of (16) as a function of the angles θ and ψ.
In (a) φ1 is increased from 0.5 to 2π − 0.5 and, for a given φ2 value, (14) is solved for φ3,
and in (b) ψ is increased from 0.5 to 2π − 0.5 and, for a given θ value, (16) is solved for φ3.

The conclusion that Donders’ law is a corollary to Listing’s law can also be found

using the parameterization featuring ψ and θ and the 1-2-1 Euler angle parameteri-

zation. We restrict attention to the former parameterization and find that in order to

3 The identity (14) is equivalent to one found in [12, p. 49] and [26, Eqn. (a)]. In the
literature (cf., e.g., [45]) it is often linearized (about the primary position) to the equation
that is equivalent to φ3 = 1

2
φ2φ1.

4 The data shown in Figure 3 completes the tables of results for a limited set of discrete
values of φ1 and φ2 presented in [12, p. 49].
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compute an expression for φ3 as a function of θ and ψ, it is convenient to first note

that

tan (φ3) =
R32

R33
=

2q2q3
2q20 + 2q23 − 1

. (15)

To establish (15), we used the representation (A.6) for R and then compared the

components to the corresponding representation of R using a 3-2-1 set of Euler angles

that were discussed in Section A.2.2. Using the expressions (6) for the quaternion

components which are compatible with Listing’s law, it follows that (15) implies

tan (φ3) =
sin (2ψ) sin2

(

θ
2

)

cos (θ) + 2 sin2 (ψ) sin2
(

θ
2

) . (16)

While the function φ3 (ψ, θ) provided by (16) can be presented in a manner similar

to that shown in Figure 3, in the interests of brevity we refrain from doing so here.

Such numerical results would also enable us to conclude that Donders’ law follows from

Listing’s law.

One issue that is potentially misleading about Figure 3 is the values of φ2 and φ3 at

the endpoints of the graph. To see that this is an artifact of the coordinate system and

doesn’t imply that motions of the eye exist where e1 returns to its original orientation

and e2 and e3 have rotated through 360◦ about e1 during the motion, it is necessary

to display Figure 3 in a different manner. First, we note that φ2 and φ3 range from 0

to 2π and so these coordinates define a torus. We now proceed to plot the level sets

shown in Figure 3(a) on a torus. The resulting construction is shown in Figure 4(a).

From this figure, we observe that when e1 returns to its original orientation, there is

no net relative rotation of e2 and e3 about e1. As shown in Figure 4(b), this conclusion

can be inferred by performing the same construction with the solutions to (16) where

now the torus is parameterized by θ and ψ.

4 Listing’s Law, Angular Velocity and Angular Acceleration

Rotations which satisfy Listing’s law have several other interesting features particularly

with respect to the angular velocity vector ω. First, if Listing’s law in the form q1 = 0

(and q̇1 = 0) is imposed, then it is easy to see from (A.13) and (A.14) that two

components of the angular velocity vector expressed in the reference and corotational

bases are identical while the third are equal and opposite:

ω ·E1 = −ω · e1 = 2 (q̇3q2 − q̇2q3) ,

ω · E2 = ω · e2 = 2 (q̇2q0 − q̇0q2) ,

ω · E3 = ω · e3 = 2 (q̇3q0 − q̇0q3) . (17)

While the components of ω in the fixed and corotational basis are related byR, ω·Ek =

(Rω) ·ek , these relationships don’t typically simplify to (17). In addition, (17) and the

identities ėi = ω× ei imply that the components of the angular acceleration vector ω̇

satisfy the identities

ω̇ ·E1 = −ω̇ · e1, ω̇ · E2 = ω̇ · e2, ω̇ ·E3 = ω̇ · e3. (18)

The relationships (17) and (18) are atypical and are a consequence of Listing’s con-

straint.
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The identities (17), which have not appeared previously in the literature on Listing’s

law, have consequences for measurements of the eye’s angular velocity. If angular rate

sensors are used that are fixed to the head, and consequently measure ω · Ei, then
these measurements are readily translated into the more difficult to measure ω · ei
without having to determine ei(t).

5 We also take this opportunity to emphasize that

(17) demonstrates that although the axis of rotation of R lies in Listing’s plane, ω

doesn’t necessarily lie in the same plane.

4.1 A Representation for the Angular Velocity Vector

Before turning to examining the representation for ω featuring the angles ψ and θ

in (6), it is convenient to use these angles and define a basis for E
3 composed of the

vectors w1 = r, w2 and w3:

w1 = r = cos(ψ)E2 + sin(ψ)E3,

w2 = E1 − e1 = (1− cos(θ))E1 + sin(θ)eψ,

w
3 = w1 ×w2 = sin(θ)E1 − (1− cos(θ)) eψ. (19)

The following inverse relations can be found using (19):

[

E1

eψ

]

=
1

2

[

1 cot
(

θ
2

)

cot
(

θ
2

)

−1

][

w2

w3

]

. (20)

When θ 6= 0, the vectors
{

w1,w2,w
3
}

form an orthogonal basis for E3 where ‖w2‖ =
∥

∥w3
∥

∥ = 2 sin
(

θ
2

)

and ‖w1‖ = 1.

(a) (b)

θ

θ
2

E2

E3

e3

e2

w2

w1

w3

w3

−r

E1

E1

e1

e1

ω

ω

F

F

L

L

V

V

Fig. 5 (a) The focal plane F , Listing’s plane L, and the displacement (velocity) plane V for
a given gaze direction e1 and primary direction E1. (b) A side view of the three planes taken
along the axis of rotation r which lies at the intersection of the planes F , L and V.

Using the quaternion parameterization (6) featuring ψ and θ that is compatible

with Listing’s law we can compute a representation to ω that is equivalent to (17).

5 Examples of such results can be seen in [42, Figure 2].



12

With the help of (19), the resulting representation has a compact and illuminating

form:

ω = θ̇w1 + ψ̇w2. (21)

As anticipated, the term featuring θ̇ is parallel to the axis of rotation, and, so if ψ̇ = 0,

then ω will be parallel to r.

The plane through the origin that is spanned byw1 and w2 is known as the velocity

plane V (cf. [45] and Figure 5).6 By construction the unit normal n to V is parallel to

w3:7

n =
w3

‖w3‖ = cos

(

θ

2

)

E1 − sin

(

θ

2

)

eψ

= q0E1 − q2E3 + q3E2. (22)

Noting the representations, from (8) and (19)3,

e1 = cos (θ)E1 − sin (θ) eψ,

w
3 = 2 sin

(

θ

2

)(

cos

(

θ

2

)

E1 − sin

(

θ

2

)

eψ

)

, (23)

it follows that w3 lies on the plane formed by e1 and E1 and that w3 bisects this pair

of vectors:8

n ·E1 = cos

(

θ

2

)

, n · e1 = cos

(

θ

2

)

. (24)

Representative examples of these geometric features of w3 can be seen in Figures 5

and 6(a).

4.2 Listing’s Constraint

We observe from (21) that the angular velocity vector satisfies the condition

ω · n = 0, (25)

where the normal vector n is defined by (22). The equation (25) is known as Listing’s

constraint: it is the restriction that ω lies on the plane V which ensures that the axis of

rotation r remains on Listing’s plane, or equivalently, the focal plane. Interestingly, the

normal vector in Listing’s constraint is the normal vector to V rather than L. Listing’s
constraint (25) is integrable (holonomic) and restricts the rotation tensor R to lie in

a submanifold of SO(3). As discussed in [7,31], this submanifold is the real projective

plane RP
2.

6 The plane V is denoted by Pω in [2,7] and is known as the displacement plane in the
works by Tweed, Villis et al. [40,41,42] who credit the discovery of the plane to Helmholtz
[12]. Tweed et al.’s papers contain experimental evidence for the existence of V . The basis set
{

w1,w2,w3
}

that we are using is novel.
7 In the classical literature, the vector n is parallel to what Helmholtz [12, p. 78] refers to

as the “temporal atropic line.”
8 The angle θ

2
between V and Listing’s plane L can be verified by comparing the angle

between the respective normal vectors n and E1 to these planes.
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e1

e1 (t∗)
(a) (b)

LL V

V(t)

V (t∗)

F

E1E1

e1(t)θ
2

θ
2

θ
2

θ
2

w3

Fig. 6 Configurations of the eye and the gaze direction. (a) Secondary position of the eye
showing Listing’s plane L, the focal plane F , and the velocity plane V. (b) Two secondary
positions of the eye and their respective velocity planes V (t) and V (t∗).

4.3 Another Representation for the Angular Acceleration Vector

With the future goal of examining the dynamics of the eye, it is of interest to compute

the angular acceleration ω̇. Earlier in (18) we observed that this vector’s components

in the fixed and corotational bases were simply related. An additional useful represen-

tation can be found using the basis vectors
{

w1,w2,w
3
}

. A direct differentiation of

(21) leads to the representation

ω̇ =
(

θ̈ + ψ̇ sin (θ)
)

w1 +

(

ψ̈ + ψ̇θ̇ cot

(

θ

2

))

w2. (26)

The fact that ω̇ is coplanar with ω and lies in the velocity plane V was recently noticed

by Cannata and Maggiali [2]. This result has significant implications for the dynamics

of the eye and the constraint moment Mc required to enforce Listing’s law.

5 Listing’s Half-Angle Rule

Listing’s law in its original form pertains to the rotation of the gaze direction from

its primary position to its current position. In practice, it is far more useful to have a

version of this law which describes the rotation of the eye between two non-primary

configurations. The resulting law is known as Listing’s half-angle rule and, among

others, is notably discussed in the works by Helmholtz [12, p. 77] and Tweed et al. [40,

42]. Because of our forthcoming works on geodesic motions, we find it convenient to

discuss the half-angle rule as well as to present an alternative proof.

Suppose the gaze direction e1 (t) has a given orientation described by a rotation

R (t) and we wish to consider a motion of the eye from this secondary position to

another position, say e1 (t
∗) (cf. Figures 6(b) and 7). One method to compute the

resulting rotation is to subject the eye to the inverse rotation RT (t) (so e1 (t) is aligned
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e1 (t)

e1 (t∗)

E1

θ(t∗)
2

θ(t)
2

θ (t∗)
θ (t)

V (t∗)
L

V (t)

Fig. 7 Schematic showing the displacement planes V (t) and V (t∗) corresponding to two
distinct orientations of the gaze direction. The viewpoint for this figure is such that the axis
of rotation corresponding to the motion from e1 (t) to e1 (t∗) is perpendicular to the plane of
the figure.

with its primary position E1) and then subject the eye to a rotation R (t∗) which will

transform E1 to e1 (t
∗). Alternatively, we can subject the eye to the compound rotation

G
(

t∗, t
)

= R
(

t∗
)

R
T (t) . (27)

Both of the rotations R (t∗) and R (t) satisfy Listing’s law, so it is natural to ask if

anything can be said about the compound rotation G (t∗, t)? The answer is yes. First,

it can be shown that the axis of rotation of G (t∗, t) lies on the velocity plane V(t)
associated with the rotation R(t) (see Figure 6(b)). Because this plane bisects E1 and

e1(t), this law is known in the literature as Listing’s half-angle rule.

As regards proofs of Listing’s half-angle rule, a terse descriptive proof is given on

page 77 in Helmholtz’s treatise [12], Lamb [20] provides a proof based on spherical

geometry, Tweed et al. [40] present an alternative proof based on Clifford algebras and

a fourth proof is presented in Judge [18] based on the observation that any rotation can

be decomposed into the product of two reflections. Here, we present yet another proof

which also serves to show that the axis of rotation of G (t∗, t) lies in the intersection

of the velocity planes associated with R (t) and R (t∗). Our proof can also be viewed

as an elaboration of that provided by Helmholtz.

Consider two orientations R (t) and R (t∗) of the eye and suppose that the angles

and quaternions associated with these orientations are denoted by (ψ(t), θ(t), q0(t),q(t))

and (ψ (t∗) , θ (t∗) , q0 (t
∗) ,q (t∗)), respectively. The quaternion (p0,p) associated with

the rotation G (t∗, t) = R (t∗)RT (t) can be determined using a well-known formulae

due to Rodrigues:

p0 = q0(t)q
(

t∗
)

+q(t) ·q
(

t∗
)

, p = q0(t)q
(

t∗
)

+ q0
(

t∗
)

q(t)+q(t)×q
(

t∗
)

. (28)

The axis c and angle β of the rotation G (t∗, t) can be found from the identifications

p0 = cos
(

β
2

)

and p = sin
(

β
2

)

c but these are not of interest here.
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It suffices for the present purposes to examine the direction of c and to show that

it lies in the velocity plane associated with the rotation R(t). The velocity plane V(t)
associated with R(t) has a normal vector w3(t) defined by (19). As β 6= 0, we can

compute p ·w3(t):

p ·w3(t) =
(

q0(t)q
(

t∗
)

+ q0
(

t∗
)

q(t) + q(t)× q
(

t∗
))

·w3(t). (29)

Because w3(t) = w1(t) × w2(t) and w1(t) ‖ q(t), we find that the above expression

simplifies dramatically:

p ·w3(t) = q
(

t∗
)

·
(

4 cos2
(

θ(t)

2

)

sin

(

θ(t)

2

)

E1

)

. (30)

However, from Listing’s law q (t∗) ·E1 = 0, and so we conclude that the axis of rotation

of the compound rotation G (t∗, t) lies in the velocity plane V(t) associated with R(t).

This result is Listing’s half-angle rule in the work by Tweed, Vilis and their coworkers

(see, e.g., [40,42,45]).

The rule actually features two velocity planes. One method of seeing this is to

compute p · w3 (t∗). Paralleling (29) and (30), we find that p · w3 (t∗) = 0. Hence,

we can conclude that, in addition to p lying on V (t), p also lies on V (t∗). Our third

observation about p is that it is also the axis of rotation of the inverse rotation

G
(

t, t∗
)

= G
T
(

t∗, t
)

= R(t)RT
(

t∗
)

. (31)

In conclusion, given two orientations of the eye, the axis of rotation of the rotation

taking one to the other and vice-versa lies on the intersection of the velocity planes

associated with the pair of orientations. This is the form of Listing’s half-angle rule

that can be found in Helmholtz’s treatise [12].

6 A Simple Dynamic Model

The human eye is widely modeled as a rigid body which is free to rotate about a point

O which is fixed in the head and a wide range of models for the eye appear in the

literature (see, e.g., [2,8,33,43]) with the state-of-the-art dynamic model appearing

in the recent work of Wei et al. [43]. The model in [43] is unique in its modeling of

the complex system of six muscle groups acting on the eye. Among other issues these

models are designed to help further ongoing research on the neuromuscular scheme

which controls vision. Here, with the goal of advancing fundamental understanding of

the dynamics of the eye, we provide a detailed examination of its unforced dynamics.

6.1 Constraint Moment

To proceed, we model the eye as a rigid body with an inertia tensor J. We assume that

the basis vectors ek are parallel to the principal axes of J with corresponding mass

moments of inertia λk where k = 1, 2, 3. Because the motion of the eye is assumed

to obey Listing’s law, the eye is subject to a constraint moment Mc which enforces
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Listing’s constraint (25). We follow standard practice and prescribe this constraint

moment as9

Mc = µn, (32)

where µ is a Lagrange multiplier.

6.2 Formulations of the Equations of Motion

Several alternative formulations of the equations of motion for the rigid body model for

the eye are available and to obtain distinct insights it is convenient for our purposes

to use three different formulations. In each of the three formulations, we ignore the

applied moments due to the muscle groups and soft connective tissues and assume

that the sole moment acting on the eye is the constraint moment Mc.

The first formulation we use is based on a balance of angular momentum relative

to the center of mass O of the eye:

Jω̇ + ω × (Jω) = Mc. (33)

If J 6= λI, then µ will generally not be zero and external intervention will be needed in

order for the motions of the eye to obey Listing’s law.

A second formulation of the equations of motion features Lagrange’s equations of

motion for the generalized coordinates ψ and θ. First, the kinetic energy T = 1
2Jω ·ω

of the rigid body is calculated with the help of (21). Expressed in a compact canonical

form, it can be shown that

T =
1

2
m11θ̇

2 +
1

2
m22ψ̇

2 +m12θ̇ψ̇, (34)

where

m11 = λ2 cos
2 (ψ) + λ3 sin

2 (ψ) ,

m22 = 4λ1 sin
4

(

θ

2

)

+
(

λ3 cos
2 (ψ) + λ2 sin

2 (ψ)
)

sin2 (θ) ,

m12 = (λ3 − λ2) cos (ψ) sin (ψ) sin (θ) . (35)

The resulting Lagrange’s equations of motion are equivalent to the w1 and w2 com-

ponents, respectively, of (33):

d

dt

(

∂T

∂θ̇

)

− ∂T

∂θ
= 0,

d

dt

(

∂T

∂ψ̇

)

− ∂T

∂ψ
= 0, (36)

The right-hand sides of (36) are zero because Mc ·w1 = Mc ·w2 = 0.

A third formulation of the equations of motion uses Hamilton’s equations of motion.

Starting from (34), the generalized momenta are

pθ =
∂T

∂θ̇
= m11θ̇ +m12ψ̇,

pψ =
∂T

∂ψ̇
= m12θ̇ +m22ψ̇. (37)

9 The prescription for the constraint moment is identical to Lagrange’s prescription that is
used in analytical dynamics (cf. [30]).
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The Hamiltonian H can be computed from (34) and (37) using a Legendre transfor-

mation:

H =
1

2
(

m11m22 −m2
12

)

(

m22p
2
θ +m11p

2
ψ − 2m12pψpθ

)

. (38)

The equations of motion for the eye are then found from Hamilton’s equations of

motion:

ṗθ = −∂H
∂θ

, ṗψ = −∂H
∂ψ

, θ̇ =
∂H

∂pθ
, ψ̇ =

∂H

∂pψ
. (39)

These equations are equivalent to (36) and are convenient to use when examining how

the dynamics of the system changes in response to changes in our assumptions on the

mass moments of inertia λk. For instance if λ2 = λ3, then m12 = 0, ∂H∂ψ = 0, and,

consequently, the momentum pψ will be conserved. The state space of the equations

of motion (39) is four dimensional and visualizing the solutions can be difficult. In the

sequel, we sometimes use the well-established practice of considering solutions to (39)

corresponding to a fixed value of H . These solutions lie on a three-dimensional manifold

in the four-dimensional state space. We can then construct a Poincaré section of this

three-dimensional manifold and examine issues such as integrability and stability of

periodic orbits.

The Lagrangian (36) and Hamiltonian (39) formulations is equivalent to (33) pro-

vided θ 6= 0.When θ = 0, the gaze direction is parallel to E1 and R = I. It is also

appropriate to recall from Section 4.1 that when θ = 0, w2 = w3 = 0 and hence
{

w1,w2,w
3
}

is not a basis for E3 when θ = 0. Furthermore, the kinetic energy fails

to be a positive-definite function of ψ̇ and θ̇ when θ = 0. This singularity manifests in

our integrations of the equations of motion (36) (and their Hamiltonian counterparts

(39)) near θ = 0.

By non-dimensionalizing time using a constant frequency ω0,

τ = ω0t, (40)

we can non-dimensionalize the momenta and Hamiltonian:

λ2,3
λ1

,
pθ
λ1ω0

,
pψ
λ1ω0

,
H

λ1ω2
0

. (41)

As ω0 is arbitrary, for our numerical work in the sequel it will often suffice to consider

cases where H = 1 and λ1 = 1.

6.3 Geodesics

From analytical mechanics [39, Section 5.5] we know that the solutions to (36) not

only conserve the energy T but they also constitute geodesics on the configuration

manifold RP
2 with respect to the kinematical line-element ds =

√
2Tdt. Owing to the

singularity in the coordinate system at θ = 0, we need to supplement our analysis of

(36) with an analysis of some of the solutions of (33) so as to capture other geodesics.

To provide interpretation of the geodesics, we pay close attention to the path of e1 on

the unit sphere. This curve traced by the tip of e1 is known as the spherical indicatrix.

In particular, we (indirectly) classify the geodesics RP
2 by the spherical indicatrix of

e1.
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As shall be apparent from the analysis in Section 7, when the eye is modeled as

a symmetric rigid body, the corresponding solutions to (33) and (36) are geodesics

of SO(3) which satisfy Listing’s constraint (25) and minimize the distance on SO(3)

between two configurations of the eye where the distance is measured using ds. The

geodesics correspond to the motions where ω̇ = 0 and we are able to use [29] to add

considerable detail to the preliminary remarks by Tweed et al. [40, p.106] and Hepp [14,

p. 3239] and the geometric and numerical results in Ghosh et al. [7,8,31] on geodesics

in the context of motions of the eye. When the eye is modeled as an axisymmetric

or asymmetric rigid body, then some of the geodesics for the symmetric case are still

present but new classes of geodesics also arise.

7 The Symmetric Case

The simplest conceivable model for the eye is to model it as a spherically symmetric

rigid body: J = λI. For this idealized case, there is a confluence of results from the

literature on rotations and opthomalogy which enables us to trivially construct motions

of the eye which satisfy the equations of motion (33). We find three classes of geodesics

for this simple model and all three classes are easily interpreted.

(a) (b)

TV

TH

i

i

ii

ii

iii

iii

D

D

1.0

1.0

1.0

−1.0
−1.0

−1.0

q0

q2

q3

E2

E3

e1e1

e1

e1 = −E1

E1

Fig. 8 (a) Spherical indicatrices of the gaze direction e1 for the three classes of geodesic
motions. The solutions labeled TH is a Class I motion corresponding to a horizontal motion of
the gaze direction, the solution labelled TV is a Class I motion corresponding to a vertical mo-
tion of the gaze direction, the solutions labelled (i)-(iii) are Class II motions, and the solution
labelled D is a Class III motion. (b) The quaternion components (q0, q2, q3) corresponding
to the periodic motions. The Class II and Class III solutions were obtained by integrating
(43). For the cases shown: H = 1, λ1,2,3 = 1, ψ(0) = 0, and (i)

(

θ(0) = π, pψ = 0.1
)

, (ii)
(

θ(0) = π, pψ = 2.8
)

, (iii)
(

θ(0) = 7π
4
, pψ = 1.08

)

and (iv) (θ(0) = π, pθ = 0.0).
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7.1 Geodesics on the Configuration Manifold

For the case J = λI, with the help of the expression (26) for ω̇, a remarkable result was

recently discovered by Cannata and Maggiali [2]: Mc = 0 for the case where θ 6= 0.

In other words, for a perfectly symmetric eye, the muscles and soft tissues don’t need

to supply any torques for Listing’s law to be enforced. In this case, the equations of

motion simplify to

ω̇ = 0. (42)

That is, the angular velocity vector of the eye is constant so we can appeal to the

complete characterization of solutions to (42) which was recently published in O’Reilly

and Payen [29]. These authors were unaware of Listing’s law and the kinematics of the

eye when they published their work.

7.1.1 Class I Motions of the Gaze Direction e1: The Great Circle Geodesics

To examine the geodesics of SO(3) which satisfy Listing’s law when J = λI, we first use

the equations of motion (33) restricted to the symmetric case, λω̇ = Mc and consider

motions where ω̇ = 0. For this case, (33) implies that Mc = 0. The trivial solutions

to this case are those where ω is constant and parallel to the axis of rotation: ω = θ̇r

(i.e., θ̈ = 0 and ṙ = 0). Because of Listing’s law, r must lie in the e2 − e3 plane and

hence e1 will trace out an arc of a great circle on the unit sphere. The great circle will

pass through the occipital point Q (the point on the equator where e1 = −E1) as well

as the primary point P (the point on the equator where e1 = E1). We call geodesics

of this type Class I. It should be noted that for this class of geodesics it is possible for

θ to range from 0 to 2π.

In the literature, two motions of the gaze direction of Class I are known as tertiary

motions. Referring to Figure 8(a), these correspond to purely horizontal and purely

vertical motions of the gaze direction and are respectively labelled TH and TV in this

figure.

7.1.2 Class II and Class III Motions of the Gaze Direction e1

In addition to the Class I motions, other types of geodesics exist and these are most

conveniently found from the Hamiltonian formulation of the equations of motion. For

these motions ω̇ = 0 but the axis of rotation r is not parallel to ω and r will describe

a great circle as the motion evolves. Setting λk = λ in (39) and rearranging, we find

three differential equations of motion from which we can compute θ(t) and r(t):

λψ̇ =
pψ

1− cos (θ)
, ṗψ = 0, λθ̈ −

sin (θ) p2ψ

(1− cos (θ))2
= 0. (43)

The solutions to these equations conserve the total energy E:

E =
λ

2
θ̇2 +

p2ψ
1− cos (θ)

. (44)

As may be inferred from the phase portrait of (43)3 shown in Figure 9, the differential

equation (43)3 has a fixed point at θ = π surrounded by closed periodic orbits. The

singular behavior of the solutions to Hamilton’s equations as θ → 0 should also be
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noted from the phase portrait. Finally, we note that the coordinate ψ is ignorable and

this will have consequences for the possible trajectories of e1 corresponding to solutions

of (43).

0

0

5.0

−5.0
2π

dθ
dt

θ

Fig. 9 The phase portrait θ− θ̇ of the differential equation (43)3 corresponding to a constant
value of pψ = 1 and λ1,2,3 = 1.

The differential equations (43) are completely integrable and their solutions can be

inferred from [29, Section 4] with minimal effort. In particular, we have the following

analytical expressions for θ(t) and ψ(t):

θ(t) = 2 cos−1 (c(t)) , ψ(t) = ψ (t0) + atan

(

pψ

λ
√
2e0

tan (f(t))

)]t1

t0

, (45)

where

2e0 = ω (t0) · ω (t0) ,

c(t) = ±

√

1−
p2
ψ

2λ2e0
sin (f(t)) ,

f(t) = ±1

2

(√
2e0t−

√
2e0t0

)

+ atan









√
2 cos (θ0/2)

√

1− p2
ψ

λ2e0
− cos (θ0)









. (46)

It follows from (45) that the angular variables θ and ψ are periodic with a period 2Tg :

Tg =
2π

‖ω‖ . (47)

It is of particular interest to note that θ(t) oscillates about π so, given a sufficient

amount of time, motions of e1 are possible where e1 = −E1 for an instant. This
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feature was noted previously by Ghosh and Wijayasinghe [7, Geodesic Theorem 2] and

we will show that it is a consequence of a theorem by Helmholtz that is discussed in

Section 7.2.10

To interpret the solutions (45) we consider a motion of the eye where the initial

orientation is given by ek (t0) and the present orientation is prescribed by ek (t). We

can then define the rotation tensor G where

G (t, t0) = R (t)RT (t0) , ek (t) = G (t, t0) ek (t0) . (48)

For motions where ω is constant, it was shown in [29] that the rotation G (t, t0) cor-

responds to a rotation at a constant speed ‖ω (t0)‖ about the instantaneous axis of

rotation i =
ω(t0)

‖ω(t0)‖
. Although the axis r(t) of R (t) is generally varying with time,

the instantaneous axis of rotation i is fixed. In addition, while r lies in all three planes

L, F and V, i may only lie in the displacement plane V.
Based on the results from [29] restricted to the case where the axis of rotation r

lies in Listing’s plane, we find two other classes of geodesics, which we denote by Class

II and Class III. For completeness we also summarize our earlier classification of Class

I geodesics.

I. The gaze direction traces out an arc of a great circle at constant speed. The circle

passes through the primary position (where e1 = E1) and the occipital point Q

(where e1 = −E1). The gaze direction can make a complete circuit in Tg seconds

and ω = θ̇r lies on all three planes V, L, and F .

II. The gaze direction traces out an arc of a circle centered about the constant angular

velocity vector ω. The gaze direction can make a complete circuit in Tg seconds

while the corresponding period of the axis of rotation r(t) is 2Tg seconds. During

the cycle, the gaze direction will be parallel to−E1 for an instant. For these motions

ω = θ̇w1 + ψ̇w2.

III. The gaze direction is opposite the primary direction e1 = −E1 and points at the

occipital point Q. The angle of rotation θ = π and, if pψ (or equivalently ψ̇) is

non-zero, then e2 and e3 will make a complete circuit in Tg seconds while the

corresponding period of the axis of rotation r(t) will be 2Tg seconds. For this class

of motions, ω = ψ̇w2 and is normal to the axis of rotation r = w1.

Examples of the indicatrices of e1 along with the corresponding traces of q0(t), q2(t)

and q3(t) for all three classes of geodesics can be seen in Figure 8. As is apparent from

this figure, the extreme versions of the Class II solutions asymptote to either a vertical

rotation correspond to a Class I motion or a Class III motion.

7.2 The Geodesics in Relation to Helmholtz’s Direction-Circles: Helmholtz’s Theorem

In his treatise, Helmholtz [12, p. 79] defines certain spherical indicatrices of e1 which

pass through the occipital point Q as direction-circles.11 Based purely on a kinematical

argument, he also establishes the following theorem which we paraphrase here and,

following Hess [15], refer to as Helmholtz’s theorem:

10 Ghosh and Wijayasinghe [7] do not appear to have been aware of Helmholtz’s theorem.
11 We refer the interested reader to [36] for a discussion of how certain types of direction-
circles were used by Helmholtz to analyze perception of straight lines in [12].
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The prolongations of all circular paths described in turning around a fixed axis

according to Listing’s law will pass through Q. Conversely, if the gaze direction

obeying Listing’s law describes an arc of a circle which passes through Q it must turn

about a fixed axis which is normal to the plane of the given circle.

Both of the fixed axis mentioned in this theorem correspond to the instantaneous axis

of rotation, i = ω

‖ω‖
, and the Listing’s law he refers to in the statement of the theorem

is now known as Listing’s half-angle rule. The spherical indicatrices of e1 which feature

a constant i and pass through Q are defined as direction-circles.

While direction-circles are typically not great circles the same cannot be said for

the locus of the unit vector n on the unit sphere. Because the unit vector n = w
3

‖w3‖
to

the velocity plane V is always perpendicular to the vector ω which passes through O,

we find that the unit vector n will always trace out a great circle on a sphere centered

at O when e1 traces out a circle. This fact was first noted by Helmholtz [12].

As can be seen from the results presented in Section 7.1, modeling the eye as a

symmetric rigid body and analyzing the solutions to the equations of motion serves to

prove Helmholtz’ theorem in a manner that differs from the one found in [12, p. 79].

We note in particular the observation that for Class I motions ω ‖ r ‖ i and so the fact

that e1 can pass through Q follows trivially. For the Class II motions where r and i are

distinct, the fact that e1 can pass through Q also follows trivially from the fixed point
(

θ, θ̇
)

= (π, 0) of (43)3 (cf. Figure 9). An alternative proof that e1 passes through Q,

which is also based on using a symmetric rigid body model for the eye, is presented in

Ghosh and Wijayasinghe [7, Geodesic Theorem 2]. Later on in the present paper, when

a non-symmetric model for the eye is examined, we find motions of the gaze direction

which pass through Q for which the instantaneous axis i is not constant.

7.3 Constructing Geodesics Between Two Configurations of the Gaze Direction

A recent work by Hess [15] examined approximating saccades of rhesus monkeys using

direction-circles. To do this, he approximated the saccades as a sequence of discrete

fixed axis rotations and then determined the circular arcs for e1(t) corresponding to the

individual rotations. In other words, he exploiting the observation that given any two

positions e1 (t1) and e1 (t2) of the gaze direction, the geodesics on SO(3) that satisfies

Listing’s law when J = λI can be used to construct (iso-energetic) motions of e1 that

will transit between e1 (t1) and e1 (t2). In principle, the number of possible paths

to achieve this transit is limited only by the muscle innervation that will be needed

to change the direction of motion of e1 at certain discrete events. In practice, given

experimental data for e1(t) and ω(t), the actual path, number of discrete segments,

and energy levels will be known.12

To elaborate, the Class I, II and III motions discussed earlier can be used to generate

a coordinate system θ and ψ for the projective plane RP2 (cf. Figure 10). Consider the

motion labelled TV in Figure 8. This tertiary motion has an axis of rotation r = E2

and is represented by the line ψ = 0 in the θ−ψ plane. By rotating the axis r through

discrete increments of π4 about E1 a series of great circles is generated by the spherical

indicatrix of e1 corresponding to vertical lines in the θ−ψ plane (cf. Figure 10(a)&(b)).

Similiarily for a Class II motion, such as the one labelled iii in Figure 8, by varying

12 In Hess [15], only θn ·Ek and e1(t) are presented and so the energy level for each discrete
component of the saccade is not given.
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Fig. 10 (a) Representations of Class I and Class II motions in the ψ − θ plane and the
corresponding representations of the (b) Class I motions and (c) Class II motions as paths
of the gaze direction. In these figures, the Class I motions are constructed by considering the
motion TV (cf. Figure 8) whose axis of rotation is E2 and phase shifting ψ in increments of
π
4
. Correspondingly the Class II motion is obtained by first considering the solution labelled

iii (cf. Figure 8) and phase shifting the initial value of ψ in increments of π
2
.

the initial value of ψ in discrete increments of π2 , a set of three curves is generated in

the θ − ψ plane. Each one of these three curves corresponds to a circular motion of

e1 (cf. Figure 10(a)&(c)). We also observe that the process of varying the initial value

of ψ by a discrete increment ∆ψ is equivalent to rotating the circle generated by the

corresponding spherical indicatrix of e1 about E1 by an angle ∆ψ.

Extrapolating from the above two examples, it should be clear that we can use Class

I and Class II motions to generate a curvilinear coordinate system featuring θ and ψ

for RP2. In addition to the fact that θ and ψ are 2π periodic, there are some unusual

features of the coordinate system we are using for the plane. First, the occipital point Q

is represented by a horizontal line θ = π. Second, the principal point P is represented

by the lines θ = 0 and θ = 2π. Finally, apart from P and Q, there is a two-to-one

correspondence between points on this plane and the orientations of the gaze direction

e1. That is,

(θ, ψ) ≡ (2π − θ, ψ + π) . (49)

The easiest example to observe this equivalence is to note the two copies of TH in the

θ − ψ plane in Figure 10(a).
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Fig. 11 (a) Motion of the gaze direction from A to C along a Class II motion and the
equivalent motion along a tertiary motion from A to B and a Class II motion B to C (b)
Representation of the same motions (labelled α, and β and γ, respectively) on the projective
plane RP

2 parameterized by θ and ψ. On RP
2, the occipital point Q and the principal point

P are represented by horizontal lines and there is a two-to-one correspondence between points
on this plane and the orientations of the gaze direction e1.

To illustrate our comments, consider the motion of the gaze direction from A to

C along the Class II motion shown in Figure 11. We can alternatively construct an

equivalent motion along a Class I motion (which corresponds to the tertiary motion

TV from Figure 8) from A to B and then a motion from B to C along a Class II motion.

It is easy to note that an infinite number of possible paths can be constructed. On

each of the paths, the energy H can be identical to the original motion from A to C

however at points such as B and A an angular impulse L must be provided to change

the momentum. This impulse is related to the change in momentum by the following

pair of jump conditions:

[[pθ]] = L ·w1,
[[

pψ
]]

= L ·w2. (50)

Returning to our earlier discussion of Donders’ law in Section 3, we also note that as

a consequence of Listing’s law, the net torsion about the gaze direction were e1 to

describe the spherical triangle from A to B to C and back again to A would be zero. As

astutely noted by Lamb [20, p. 688], in the absence of Listing’s law one would expect

the net torsion to be the area of the spherical triangle ABC which is non-zero (and in

violation of Donders’ law).

7.4 A Poincaré Section

The forthcoming cases, where J 6= λI, cannot be classified as simply as we have just

done. To see this it is useful to further elaborate on the solutions of (43). In particular,

because the solutions to these equations of motion preserve pψ and H , we can construct

a Poincaré section in the state space of (43) corresponding to a level set of H = 1,

ψ̇ > 0 and ψ > 0. The Poincaré section is shown in Figure 12 and four samples of

the solutions to (43) along with their corresponding gaze direction locii e1(t) are also

shown.

The Poincaré section shown in Figure 12 is indicative of an integrable system. Each

periodic orbit of (43) appears as a single point on the Poincaré section. If we were to
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Fig. 12 Four periodic motions in θ, ψ, pθ space showing the Poincaré section ψ = 0 mod (2π)
for the differential equations (43). Three of these motions, which are labeled i-iii are Class
II motions while the solution labeled D is a Class III motion. The inset images to the left of
the Poincaré section show the spherical indicatrix of e1 corresponding to the trajectories. The
parameter values and labeling of solutions (i)-(iii) and D is identical to the solutions shown
in Figure 8.

integrate (43) for all possible initial values of θ, pψ, and pθ while keeping H = 1, then

the Poincaré section shown in Figure 12 would resemble a solid round-edged rectangle.

Indeed, the Poincaré map for this case is the identity mapping and every geodesic

corresponds to a fixed point of the Poincaré map.

8 The Axisymmetric and Asymmetric Cases

When we remove the modeling assumption that J = λI the classification of the

geodesics that we found in the symmetric case no longer holds. Indeed from all three

classes of geodesics we can only prove that the Class I and III motions are present when

in the axisymmetric case where λ2 = λ3 and, for the asymmetric case, only those two

tertiary motions labeled TH and TV in Figure 13 are present. When the eye is assumed

to be axisymmetric with λ2 = λ3, then we find that the equations of motion (39) are

completely integrable, however the same cannot be said for the asymmetric case where
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P P

Fig. 13 Three examples of the spherical indicatrices of the gaze direction e1 corresponding
to the geodesics on RP

2 for the (a) axisymmetric model and (b) asymmetric model of the eye.
The solutions labeled TH and TV are Class I motions which correspond to geodesics in the
θ−ψ projective plane RP

2. For the other solutions, the moment of inertia values are identical
to those used to construct Figures 14 and 16, respectively, and the initial conditions for the
equations of motion (39) are θ0 = π, ψ0 = 0, pθ0 = 0.0939715, and pψ0

= 1.08.

the mass moments of inertia are distinct. In both the axisymmetric and asymmetric

cases, for those geodesics on RP
2 which don’t correspond to constant values of ψ, the

corresponding spherical indicatrices of e1 are no longer closed circles but instead are

quasiperiodic motions which wind around the sphere. Two representative examples of

these indicatrices are shown in Figure 13. For the asymmetric case, the complexity of

the motion of e1(t) was first noted in the recent paper by Ghosh et al. [8, Figure 8].

To elaborate on our previous comments, let us first examine the nature of the

geodesics when J 6= λI. We consider the equation of motion (33) and seek constant

angular velocity solutions ω = ω0 where ω̇ = 0 and Mc = 0. In this case, (33) reduces

to

ω0 × (Jω0) = 0. (51)

This equation has a solution ω0 which is parallel to an eigenvector of J. For the

axisymmetric case, any vector in the e2 − e3 plane is an eigenvector of J, so ω0 =

ω02e2 + ω03e3. For such motions to be compatible with Listing’s law, it is easy to

show that r and ω0 must be parallel:

ω0 = θ̇0r where r = r2e2 + r3e3. (52)

On the configuration manifold RP
2, these solutions correspond to θ̇ = θ̇0 and ψ =

ψ0 and the resulting spherical indicatrices of e1 correspond to the Class I motions

we defined earlier. For the asymmetric case, a parallel analysis of (51) leads to the

conclusion that

ω0 = θ̇0E2 or ω0 = θ̇0E3. (53)

On RP
2, these solutions correspond to θ̇ = θ̇0 and ψ = 0 or ψ = π

2 and the resulting

spherical indicatrices of e1 correspond to the tertiary motions TH and TV in Figures 8

and 13.
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Fig. 14 (a) The phase portrait of θ − pθ for a constant value of pψ = 1 for the differential
equation (54)3, and (b) the Poincaré map for the axisymmetric case that is obtained by in-
tegrating (54). For the numerical results shown, λ1 = 1.0, λ2 = λ3 = 1.50, and H = 1.0 for
the Poincaré map. The Poincaré section was constructed by sampling values of pθ(t) and θ(t)

corresponding to ψ(t) = 0 and ψ̇(t) > 0.

As regards integrability, if we consider the equations of motion (39) restricted to

the case λ2 = λ3, then it is straightforward to show that both H and pψ are integrals

of motion.13 Indeed (39) simplify to

λ1ψ̇ =
pψ

4λ1 sin
4
(

θ
2

)

+ λ3 sin
2 (θ)

,

ṗψ = 0,

λ3θ̈ =
((λ3 − λ1) sin (2θ) + 2λ1 sin (θ)) p

2
ψ

(

4λ1 sin
2
(

θ
2

)

+ (λ3 − λ1) sin
2 (θ)

)2
. (54)

The equations of motion (54) can be integrated to provide analytical expressions for

θ(t) and ψ(t). However, in contrast to (45) the analytical expressions will feature hy-

pergeometric functions and, in the interest of brevity, are not reproduced here. We can

numerically integrate (54) to determine the phase portrait of (54)3 and the resulting

phase portrait is shown in Figure 14(a). The Poincaré map can also be constructed in

an identical manner to the one shown in Figure 12. In contrast to the symmetric case,

the resulting map has only one fixed point at (θ = π, pθ = 0). The fixed point of the

Poincaré map corresponds to the Class III motion discussed in the symmetric case (see

solution labelled D in Figures 8 and 12) The solutions (θ(t), ψ(t)) define the geodesics

on RP
2 for this case.

For the axisymmetric model, the spherical indicatrices of e1 corresponding to

geodesics no longer form closed circular curves but wind around the unit sphere. Be-

cause of the fixed point of (54) at θ = π, the gaze direction has the potential to pass

through the occipital point Q for all solutions of (54). Apart from the Class I motions,

the instantaneous axis i is not constant as it was for the case considered in Section 7.2.

13 I.e., ψ is an ignorable coordinate just as it was in the symmetric case.



28

(a)

(c)

(d)

(b)

(e)

2.0

2.0

0
0

0

0

0

−2.0

−2.0

π
2π

2π

2π q0

q2

q3

Q

Q

P

P

P

pθ

pθ

θ

θ

θ ψ

Fig. 15 Features of a solution to the equations of motion for the asymmetric model. (a)
Spherical indicatrix of the gaze direction e1, (b) phase portrait of the solution (θ(t), pθ(t)) to
(54), (c) Poincaré section of the solution

(

θ(t), ψ(t), pθ(t), pψ(t)
)

to (54), (d) the trajectory of
(ψ(t), θ(t)) on the ψ − θ plane, and (e) components of the unit quaternion (q0(t), q2(t), q3(t))
computed using solutions θ(t) and ψ(t) to (54). For the solution shown, λ1 = 1.0, λ2 = 0.98,
λ3 = 1.02, H = 1.0, ψ(0) = 0.0, θ(0) = π, pψ(0) = −1.04978 . . ., and pθ(0) = −1.3

For the asymmetric case, where J has distinct principal values, the equations of

motion (39) no longer have an ignorable coordinate ψ and an associated conserved mo-

mentum pψ. Apart from the motions TV and TH, the spherical indicatrices of the gaze

direction corresponding to the geodesic typically wind around the unit sphere. This

feature can be seen in the representative example shown in Figure 15. For complete-

ness, we have also indicated how the corresponding solution would appear on a phase

portrait, Poincaré section, and ψ − θ plane. We also observe from Figure 15(e), that

the behavior of (q0, q2, q3) is far more complex than its symmetric counterpart shown

in Figure 8(b). To examine the integrability of the canonical Hamiltonian system, we

numerically constructed Poincaré maps. A representative example is shown in Figure

16. Observe from this figure that the equilibrium (θ = π, pθ = 0) has changed stability

and that the behavior at θ = 0 and θ = 2π has significant quantitative differences from

its axisymmetric counterpart in Figure 14. We also find that as the λk became increas-

ingly distinct, the Poincaré map displays an ever increasing number of stochastic zones

(as we would expect from KAM theory).

For the axisymmetric and asymmetric models, we can still use the corresponding

geodesics on RP
2 to construct a framework for e1 as we did earlier in Section 7.3 for
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Fig. 16 Poincaré map for the asymmetric eye obtained by integrating (39). For the numerical
results shown, λ1 = 1.0, λ2 = 0.98, λ3 = 1.02, and H = 1.0. The Poincaré section was
constructed by sampling values of pθ(t) and θ(t) corresponding to ψ(t) = 0 and ψ̇(t) > 0. To
facilitate comparisons to the literature, the values chosen for the mass moments of inertia are
similar to those used in [8]. Multiple features of the solution labelled with the “←” are shown
in Figure 15.

the symmetric model. In this case the fact that the motions of e1 corresponding to

geodesics no longer form simple closed circles can be exploited to generate paths of the

gaze direction between any two points on the sphere. An example of such a situation

can be seen in Figure 15(d).

It is of interest to reexamine Helmholtz’s theorem that was discussed in Section

7.2. When the eye is modeled as non-symmetric rigid body, then, apart from the Class

I geodesics for the axisymmetric case and the tertiary motions for the asymmetric case,

the only way to have motions which correspond to the constant angular velocity motions

his theorem describes is to impose an applied moment. For example, consider a constant

angular velocity motion where ω = ω0. Then, the balance of angular momentum can

be used to show that an applied moment Ma must act in order for the eye to exhibit

a constant angular velocity motion:

Ma = −µn+ ω0 × (Jω0) . (55)

In the absence of such an applied moment, the motions of the gaze direction found by

integrating Jω̇+ω× (Jω) = 0 typically feature motions where ω̇ 6= 0 such as the two

examples shown in Figure 13.

9 Concluding Comments

We have developed and analyzed a rigid-body based model for the dynamics of the

eye. Even in the absence of muscles, the resulting dynamics exhibit a rich behavior

and allow a remarkable range of motions for the gaze direction with minimal external

intervention. For the symmetric eye and axisymmetric eye models, the wide spectrum
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of motions can be partially attributed to the ignorable nature of the ψ coordinate, while

for the asymmetric model, the spectrum of motions is provided by the quasiperiodic

nature of the geodesics. It is also noteworthy that the range of motions persists even

when the mass moments of inertia are varied and that all of the possible indicatrices

of the gaze direction pass through the occipital point. To initiate these eye movements

and to enable transition such as shown in Figure 11(b), the intervention of muscles are

needed both at discrete events where the trajectory changes and to overcome viscous

damping and the effects of the orbital tissues. We also note that while many of the

motions of the gaze direction that we observed are not physiological it is important

to construct a complete picture of the dynamics predicted by the simple models we

examined so the more complex models featuring muscles can be more fully understood.

It is appropriate to comment on the work of Tweed et al. [40, p. 106]. They observed

that the saccades found in their experiments were fixed axis of rotation motions and this

inspired us to examine geodesics. In extrapolating our results to theirs, it is important

to observe that fixed axis of rotation motions are only found in the symmetric model, for

the Class I motions in the axisymmetric model, and for the tertiary motions TV and TH
in the asymmetric models. Thus our qualitative results fail to capture the complexity

of saccadic motions found by them (see, e.g., [42, Figure 2]). To satisfactorily explain

their results, it will be necessary to include models for the muscles and then proceed

with a qualitative analysis of the resulting equations of motion. Such an analysis would

complement the detailed state-of-the-art numerical model in [43].

In the context of rigid body dynamics, the non-integrability we observe in the asym-

metric rigid body model for the eye is novel. Given the integrability of the equations

of motion for the unconstrained rotational motion of an asymmetric rigid body, we

would expect the corresponding holonomically constrained problem to be integrable,

but this is not the case. Indeed the non-integrability has parallels to that for the case

of an asymmetric body that is free to rotate about a fixed point O under the action of

a gravitational force. This conservative mechanical system is non-integrable (cf. [21]).
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quaternion is known as a unit quaternion. A third alternative parameterization is to use a
set of Euler angles. There are 12 possible choices of Euler angles and the literature on the
kinematics of the eye is dominated by two of them. In studies on the kinematics of the eye, all
of the aforementioned parameterizations have been used to successful explore features of the
kinematics.

In what follows, we collect necessary background material on rotations from a range of
sources and present it in a unified manner. Because of the widespread differences in how
Euler angles are defined in the literature, we note explicitly here that our treatment of Euler
angles follows that presented in the textbook [28]. Before addressing Euler angles, we find
it convenient to start our discussion of the representation for a rotation tensor by using the
quaternion representation. Using this representation to study the kinematics of the eye was
championed by Westheimer [44] and, more recently, was successfully used by Tweed, Vilis, and
their coworkers [4,40,41,42].

A.1 The Rotation Tensor and its Components

The parameters q0 and q of a unit quaternion can be used to define a rotation about an axis
r through an angle θ using the identifications

q0 = cos

(

θ

2

)

, q = sin

(

θ

2

)

r. (A.1)

The resulting representation of the rotation tensor R is

R = R (q0,q) =
(

q20 − q · q
)

I+ 2q⊗ q+ 2q0 skewt (q) . (A.2)

In this representation, the skew-symmetric tensor of a, skewt (a), is a skew-symmetric tensor
with the property that skewt (a)b = a× b for all vectors a and b.

As R transforms Ek to a vector ek: REk = ek where k = 1, 2, 3, it can be shown that
R =

∑3
i=1 ei⊗Ei =

∑3
i=1

∑3
k=1Rikei⊗ek =

∑3
i=1

∑3
k=1RikEi⊗Ek. Here, Rik are known

as the components of R.
We note the important property that the axis of rotation remains unchanged by the rota-

tion:

Rr = r, (A.3)

and hence RTRr = RT r. Because RTR = I where I is the identity tensor, r is also unchanged
by the inverse of the rotation:

r = RT r. (A.4)

It is now straightforward to show using the identity a · ek = a · (REk) =
(

RTa
)

·Ek that, for
all vectors a,

rk = r · ek = r ·Ek, qk = q · ek = q · Ek. (A.5)

This common feature of the vectors r and q, namely that they have the same components in
the fixed and corotational bases, will be the source of many of our observations on Listing’s
law.

Examining the components Rik = ek ·Ei of the tensor R one finds that

R =





R11 R12 R13

R21 R22 R23

R31 R32 R33



 =
(

2q20 − 1
)





1 0 0
0 1 0
0 0 1



+ 2





q21 q1q2 q1q3
q1q2 q22 q2q3
q1q3 q2q3 q23



+ 2q0





0 −q3 q2
q3 0 −q1
−q2 q1 0



 .

(A.6)
The column vectors of the matrix R define the components of the moving bases vectors relative
to their fixed counterparts and vice versa:

ek = R1kE1 + R2kE2 + R3kE3, Ek = Rk1e1 +Rk2e2 +Rk3e3. (A.7)

These identities enable us to later construct ei(t) given q0 and q.
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A.2 Euler Angle Parameterizations

In many studies of the ocular system, several sets from the 12 possible sets of Euler angles are
used to parameterize the rotation tensor R. For instance, Fick in 1854 is credited with using a
3-2-1 set of Euler angles [9,26,37] to examine the kinematics of the eye having a gaze direction
e1. This set of angles, which are sometimes known as “Fick coordinates,” also feature in the
classic work by Helmholtz [11, p.207] from 1865. Later, in his highly influential treatise [12],
Helmholtz uses both a 2-3-1 set of Euler angles (cf. [12, pp. 43–44]) and a set of 1-3-1 Euler
angles (cf. [12, pp. 73–75]). The 2-3-1 set of Euler angles is sometimes known as “Helmholtz
coordinates” (cf. [37]).

In principle it is possible to use any of the 12 sets of Euler angles to parameterize R. How-
ever, depending on the issue of interest, asymmetric sets such as the 3-2-1 set have advantages
over the symmetric sets, such as the 1-2-1. Indeed, we find it convenient to consider both a
3-2-1 and a 1-2-1 set of Euler angles. The 1-2-1 set is advantageous both as a means to compare
with the quaternion parameterization of the eye’s rotation and as a transparent representation
of Listing’s law. By way of contrast, while the 3-2-1 set provides the most transparent measure
of the angle of (ocular) torsion and a treatment of Donders’ law, the 3-2-1 set produces an
unwieldy representation of Listing’s law.

A.2.1 A 1-2-1 Euler angle parameterization

For the 1-2-1 parameterization, we first rotate about E1 through a counterclockwise angle of

rotation θ1, then we rotate about e
′

2 = cos (θ1)E2 − sin (θ1)E3 through a counterclockwise
angle θ2, and finally we rotate about e1 through a counterclockwise angle of rotation θ3:

e1 = cos (θ2)E1 + sin (θ2) sin (θ1)E2 − sin (θ2) cos (θ1)E3. (A.8)

To show the equivalence of the Euler angle parameterization to the earlier quaternion based
parameterization, we use known formulae from quaternion algebra for the composition of
rotations (see, e.g., [28, p. 201]. After a substantial amount of algebra it can be concluded that

q0 = cos

(

θ2

2

)

cos

(

θ1

2
+
θ3

2

)

,

q1 = cos

(

θ2

2

)

sin

(

θ1

2
+
θ3

2

)

,

q2 = sin

(

θ2

2

)

cos

(

θ1

2
−
θ3

2

)

,

q3 = sin

(

θ2

2

)

sin

(

θ1

2
−
θ3

2

)

. (A.9)

These expressions are used to demonstrate equivalent formulations of Listing’s law. We can
also express the components of R in terms of the 1-2-1 set of Euler angles. The resulting
lengthy expressions are omitted in the interests of brevity.

A.2.2 A 3-2-1 Euler angle parameterization

The second set of Euler angles that prominently features in the discussions of the ocular system
is the 3-2-1 set. As mentioned earlier, use of this set dates to Fick in the 1850s and, as noted
by [37], the 3-2-1 set is the easiest set to use when trying to understanding the motion of the
gaze direction. When using a set of 3-2-1 Euler angles to parameterize of the rotation of the
eye, we first rotate about E3 through a counterclockwise angle of rotation φ1, then we rotate

about e
′

2 = cos (φ1)E2+sin (φ1)E1 through a counterclockwise angle φ2, and finally we rotate
about e1 through a counterclockwise angle of rotation φ3:

e1 = cos (φ1) cos (φ2)E1 + sin (φ1) cos (φ2)E2 − sin (φ2)E3. (A.10)

The angle φ3 in this parameterization can be used to measure ocular torsion (or the rolling
motion of the eye), but this measurement is easily prone to misinterpretation.
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Omitting details, we find that corresponding expressions for the components of the quater-
nion (q0,q) that is used to parameterize the same rotation R as the set of 3-2-1 Euler angles
are

q0 = cos

(

φ1

2

)

cos

(

φ2

2

)

cos

(

φ3

2

)

+ sin

(

φ1

2

)

sin

(

φ2

2

)

sin

(

φ3

2

)

,

q1 = cos

(

φ1

2

)

cos

(

φ2

2

)

sin

(

φ3

2

)

− sin

(

φ1

2

)

sin

(

φ2

2

)

cos

(

φ3

2

)

,

q2 = cos

(

φ1

2

)

sin

(

φ2

2

)

cos

(

φ3

2

)

+ sin

(

φ1

2

)

cos

(

φ2

2

)

sin

(

φ3

2

)

,

q3 = sin

(

φ1

2

)

cos

(

φ2

2

)

cos

(

φ3

2

)

− cos

(

φ1

2

)

sin

(

φ2

2

)

sin

(

φ3

2

)

. (A.11)

Again, in the interests of brevity, we do not provide explicit expressions for the components
of R in terms of the Euler angles.

A.3 Angular Velocity Vectors

The angular velocity vector ω associated with the rotation tensor R is defined as the axial vec-
tor of the skew-symmetric tensor ṘRT : skewt (ω)a = ṘRTa for all vectors a. Differentiating
the identity ek = REk with respect to time t, it can be shown that

ėk = ω × ek . (A.12)

It can also be shown that ω has the representation14

ω = 2 (q0q̇− q̇0q+ q× q̇) . (A.13)

The corresponding representations for ω in terms of the 1-2-1 and 3-2-1 sets of Euler angles
are easily written down15 but are omitted here in the interests of brevity.

Taking the Ei and ek components of ω given by (A.13) leads to the results





ω ·E1

ω ·E2

ω ·E3



 = A







q̇0
q̇1
q̇2
q̇3






,





ω · e1
ω · e2
ω · e3



 = C







q̇0
q̇1
q̇2
q̇3






, (A.14)

where

A = 2





−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0



 , C = 2





−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0



 . (A.15)

A compact expression for the angular acceleration components ω̇ · Ek as a product of A and
the array [q̈0, q̈1, q̈2, q̈3]

T can be easily deduced from (A.13) and (A.14)1.

14 See, e.g., [28, Sect. 6.9].
15 See, e.g., [28, Sect. 6.8].
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