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Abstract

The review presents a parameter switching algorithm and his applications which allows numerical approximation of
any attractor of a class of continuous-time dynamical systems depending linearly on a real parameter. The considered
classes of systems are modeled by a general initial value problem embedding dynamical systems which are continuous and
discontinuous with respect to the state variable, and of integer and fractional order. The numerous results, presented
in several papers, are systematized here on four representative known examples representing the four classes. The
analytical proof of the algorithm convergence for the systems belonging to the continuous class is briefly presented,
while for the other categories of systems the convergence is numerically verified via computational tools. The utilized
numerical tools necessary to apply the algorithm are contained in five appendices.

Keywords Parameter switching; Global attractors; Local attractors; Fractional systems; Discontinuous systems; Filippov
regularization

1 Introduction

In Nature there are many different interactions and the real systems could evolve according to more that one dynamics for
short periods of time. Therefore, it is reasonable to think that the evolution of some natural processes could be imagined
as the result of the alternation of different dynamics for relatively short periods of time. In particular, a topic of research
regarding parameter switching which has arisen in the last years, consists in studying the dynamics of continuous-time
systems [1, 2, 3, 4, 5, 6, 7] and discrete systems [8, 9, 10].

In this paper we review aspects of some previous results, obtained by us with parameter switching techniques. We
considered general classes of systems, continuous and discontinuous with respect to the state variable, and of integer and
fractional order.
The truthfulness of the previous results are sustained here by another numerical tool, the cross-correlation.

Via numerical simulations we found for a large class of systems (and analytically proved for a particular class [11]),
that any attractor of some considered system can be synthesized (numerically approximated) by using some parameter
switching rule. The analytical and numerical proofs are based on the fact that the invariant sets obtained with the
control parameter periodically switched are numerical approximations of those corresponding to the control parameter
replaced with the average of the switched values. This useful result was intensively verified on several examples with a
numerical algorithm called the Parameter Switching algorithm which represents an elegant and easy way to numerically
approximate any attractor of a dynamical system, belonging to a general class of systems, starting from a set of accessible
parameter values which are switched in relative short period of times. The switching rule can be modeled by some piecewise
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continuous function. The algorithm is useful for example in practice, when a desired parameter value cannot be directly
accessed. Also, it can help to understand what happens in some real systems when the control parameter is switched by
natural or imposed causes.

The Parameter Switching algorithm differs from the known control/anticontrol algorithms, where the parameter is
generally slightly modified following some very precise rules in order to modify the behavior of some trajectory. Our
algorithm allows the choice of any deterministic or even random switching rule within a set of parameter values, the result
being an attractor which belongs to the set of all existing attractors of the underlying system.

The paper is organized on two main parts concerning theoretical aspects and applications respectively, as follows:
Section 2 presents the attractors synthesis, where the Parameter Switching is detailed, Section 3 presents the numerically
evidence of the Parameter Switching algorithm convergence, and finally, in Section 4, four representative examples are
analyzed. Additional information are presented in five Appendices.

2 Attractors synthesis

In this section, the used notions, results, assumptions and the underlying Initial Value Problem (IVP) modeling a general
class of systems, continuous or discontinuous with respect to the state variable and of integer or fractional order, are
presented.

2.1 Preliminaries notions and notations

All the considered systems can be modeled by the following IVP

dqx(t)
dtq = f(x(t)) + pBx(t) + Cs(x(t)), x(0) = x0, t ∈ I (1)

where p is a real parameter, q stands for the derivative order (for q = 1, we have the known standard derivative, while
for q 6= 1 we have the so called fractional derivative: dq/dtq), f : Rn → Rn is a nonlinear vector valued function,
at least continuous with respect to the state variable, I = [0, T ] , T > 0 , B, C real n × n squared matrices, and
s : Rn → Rn, s(x) = (s1(x1), . . . , sn(xN ))t is a piece-wise continuous function, being composed in most general cases by
signum functions: si(xi) = sgn(xi), i = 1, 2, . . . , n, or e.g. step (Heaviside) functions.
It is classically assumed that q ∈ (0, 1]. Function of q and C, we can have the situations presented in Table 1.
Throughout this paper the following assumption will be considered

(H1) The IVP (1) admits a unique solution (e.g. Lipschitz continuous).

The control parameter p is considered to be a (periodic) piecewise constant function p : I → R (an example for a
periodic function p is presented in Fig.1). As we shall see next, p can be a periodic or non-periodic function. Other form
of functions for p can be found in [11].

Due to the piece-wise continuity of p, the IVP (1) becomes non-autonomous. However, for the sake of simplicity, next
the time variable t will be omitted unless necessary. Therefore, the IVP (1) can be written as follows

dqx

dtq
= f(x) + pBx+ Cs(x), x(0) = x0, t ∈ I. (2)

Remark 1. The existence and uniqueness conditions for IVPs modeling DI and DF systems differ from those for CI
systems, and are not presented here (for our class of DI systems they can be found in e.g. [12], while for differential
equations of fractional order in [13] or [14].)

The systems chosen to represent in this work the four classes in Table 1 are three-dimensional, but the algorithm and
the underlying results are applicable for any finite lower or higher dimension n.
The examples treated here are presented in Table 2: Lorenz system, Sprott system [15], Lü system [16] and a fractional
variant of the Chua’s system [17]. Other examples can be found in [1, 3, 5, 6, 7].
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A global attractor, roughly speaking, is viewed in this paper as a state space region of a dynamical system where the
system can enter but not leave, and containing no smaller regions (see e.g. [18]). The global attractor contains all the
dynamics evolving from all initial conditions. In other words, it contains all the solutions, including stationary solutions,
periodic solutions, as well as chaotic ones. The term of local attractor is used sometimes for attractors which are not
global attractors [19].
The global attractors may contain several local attractors. Therefore, a global attractor can be considered as being
“composed” of the set of all local attractors for a given parameter p value and initial conditions. Each local attractor
attracts trajectories from a subset (basin of attraction) of initial conditions (for details on the notions of local and global
attractors we refer e.g. to [20, 21, 22, 23]).

Remark 2. (i) For the sake of simplicity, when a global attractor is composed by several local attractors, only a single
local attractor will be considered (the choice can be made by appropriate selections of the initial conditions). Therefore,
hereafter, by attractor one understands, simply, either one of the local attractors or the single local attractor which
composes the global attractor;
(ii) Due to the predominant numerical characteristics of the present work, without a significant loss of generality, the
attractors will be considered as approximations, after neglecting a sufficiently long period of transients [24], of the ω−limit
sets (the set of points that can be limit of subtrajectories). Despite the fact that usually these sets are uncomputable,
they can be numerically approximated. Therefore, in this paper the attractors are considered as being the plots of the
ω − limit sets.

Let us use throughout the review the following notations

Notation 1 - A the set containing the attractors depending on p, including attractive stable fixed points, limit cycles
and chaotic attractors;
- P the set of all p admissible values;
- PN = {p1, p2, . . . , pN} ⊂ P a finite ordered subset of P;
- AN = {A1, A2, . . . , AN} ⊂ A the set of the attractors corresponding to PN ;

- I =
⋃

j=1,2,...

(
N⋃
i=1

Iij), where the adjoint subintervals Iij are of time length mih, where the ”weights” mi are some positive

integers, h > 0, for i = 1, 2, . . . , N and all j (see Fig.2 for the particular case of the first set of time-intervals Ii1 for
i = 1, 2, 3, 4 );
- p∗ the average parameter

p∗ =

N∑
i=1

mipi

N∑
i=1

mi

; (3)

- A∗ the average attractor, obtained for p = p∗.

Remark 3. Taking account to the Assumption H1 it follows naturally to define a monotone bijection F : PN → AN for
some fixed N. Therefore, to each p ∈ PN corresponds a unique element A ∈ AN and reversely, for each A ∈ AN there
exists p ∈ PN such that A = F (p) (Fig.3).

2.2 Parameter Switching algorithm

To prove that any attractor can be approximated by switching the parameter while the underlying IVP is integrated, we
need a numerical algorithm to implement the switches that we name Parameter Switching (PS) algorithm.
Let fix for some N, the set PN . Then, p∗ given by (3), can be rewritten in the following form

p∗ =

N∑
i=1

αipi with αi = mi

/
N∑
i=1

mi, pi ∈ PN . (4)
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Because αi < 1 and
N∑
i=1

αi = 1 , p∗ enjoys the following property

P1. For every set PN , p∗ given by (3) is a convex combination of pi, i = 1, 2, . . . , N .

To implement the PS algorithm, we have to integrate the IVP (2) with a numerical scheme for ODEs with single
step-size h (e.g. the standard Runge-Kutta method).
Let first consider that p is a periodic function of period T0, i.e. p(t + T0) = p(t) for all t in I. While the solution to
the IVP (2) is numerically approximated, the parameter p is periodically switched within PN in every consecutive time
interval Iij , following some designed scheme, denoted hereafter by Sh

Sh $
[
p1
∣∣
I1j , p2

∣∣
I2j , . . . , pN

∣∣
INj

]
, j = 1, 2, . . . , (5)

which means that while the IVP (2) is integrated, in each interval Iij , p will be replaced by pi for every j = 1, 2, . . .. Thus,
for t ∈ I11 , p(t) = p1, for t ∈ I21, p(t) = p2 and so on until IN1, when p(t) = pN . On the next interval I12, again p(t) = p1
and so on until the interval IN2, when p(t) = pN . The algorithm repeats on the next set of intervals Ii3, i = 1, 2, . . . , N

and so on periodically, until t ≥ T . In other words, p is a piecewise constant and periodic function of period T0 = h
N∑
i=1

mi

having the following expression (See Fig.1,2)

p(t) = pi, for t ∈ Iij , i = 1, . . . , N, j = 1, 2, . . . (6)

The length of the time intervals Iij will be taken as multiple of h: length(Iij) = mih for each j. Therefore, for a fixed h,
Sh can be noted in a simplified form

Sh $ [m1p1,m2p2, . . . ,mNpN ] , (7)

which means the following p infinite sequence

m1p1,m2p2, . . . ,mNpN ,m1p1,m2p2, . . . ,mNpN , . . .

For example, Sh = [2p1, p2] for a given h, means that for the time-interval of length 2h, p = p1 then for the next time-
interval of length h, p = p2 . Next, for two integration steps, p = p1, then for one integration step, p = p2 and so
on
(i.e. periodically with period T0 = (m1 + m2)h = 3h). Schematically, Sh can be written as the infinite sequence
[2p1, p2] = p1, p1, p2, p1, p1, p2, . . .
The pseudocode of the PS algorithm is given in Table 3.
It is easy to verify that

p∗ =
1

T0

t+T0∫
t

p(τ)dτ, t ∈ I.

Notation 2 Let denote by A◦ the attractor, obtained with the PS algorithm, called hereafter the synthesized attractor.

Remark 4. It is easy to see that, for some given p, the relation (3) considered as equation, may have several solutions.
For example, if we set N = 2, and want to obtain p∗ = 4 using the scheme Sh = [m1p1,m2p2], for p1 = 2 and p2 = 6, we
can choose m1 = m2 = 1 but also m1 = m2 = 3 to verify (3). If we fix m1 = 3 and m2 = 1, in order to obtain p∗ = 4, we
can use p1 = 2 and p2 = 10, but also p1 = p2 = 4.
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3 Numerical proof of PS algorithm convergence

In this section we prove numerically that for a chosen set of attractors AN , the synthesized attractor A◦ obtained with
the PS algorithm belongs to AN and, moreover, A◦ is approximatively identical to A∗.
In order to compare two attractors, we have to provide the following criterion

Criterion We shall say that two attractors are approximatively identical (AI) if their trajectories in the phase space
approximatively coincide, and the Hausdorff distance (Appendix B) is small enough.

In our numerical experiments Hausdorff distance was of order of 10−4 − 10−3.
Due to the bijectivity of F, considering the total order over the set PN , it is reasonable to consider that the following
property holds

P2. AN is an ordered set endowed with the PN order induced by the function F.

Moreover, the same order can be found over the sets PN and AN considered as intervals: [p1, pN ] and [A1, AN ] respectively
and, without losing generality, we can consider that Ai = F (pi), i = 1, 2, . . . , N (Fig.4). This property is outlined in all
bifurcation diagrams.

Notation 3 Let denote AI by ” ∼= ”.

Next, in order to prepare the proof of the main result regarding the parameter switching, we introduce the following
lemma

Lemma 1. Given N and PN , A◦ ∼= A∗.

Proof. The lemma has been checked numerically with tools such as: histograms, Poincaré sections, time series, cross-
correlation (Appendix A) and Hausdorff distance (Appendix B). The numerous examples, show that the attractor A◦,
obtained with PS algorithm and A∗ obtained for p = p∗, are AI, the degree of the identity depending less or more on the
system characteristics and, unavoidably, on the numerical errors. Hausdorff distance, for all considered systems, was of
order of 10−4 − 10−3.

The sketch of the analytical proof of this lemma, presented in [11] for the case of CI systems, can be found in Appendix
C.

Remark 5. Applying the symbolic computation for several examples of CI systems, with the scheme Sh for N ≤ 3, the
IVP (2) was integrated with the forward Euler method. The result shown that the (Euclidean) difference between the two
solutions corresponding to p = p∗ and to p switched with the PS algorithm, is of order of O(h2), the same as the error of
the considered Euler method.

Yet, the main result which can be numerically proved, can be introduced.

Theorem 1. Given N and PN , A◦ belongs to (A1, AN ).

Proof. By the properties P1 and P2, it follows that A∗ ∈ (A1, AN ). Next, by the Lemma 1, the attractor A◦ synthesized
with some scheme Sh, is AI to A∗. Thus, A◦ ∼= A∗ and therefore A◦ belongs to (A1, AN ), which completes the proof (see
Fig.5).

Summarizing, for every finite set PN and numbers mi, the synthesized attractor A◦ will belong to (A1, AN ), and differs
from every attractor Ai ∈ AN , i = 1, 2, . . . N (due to the convexity property). Reversely, any attractor of AN can be
considered as being synthesized with the PS algorithm, by means of a finite set of attractors of AN .

For the continuous case, the analytical proof in [11], shows that the solutions of the equation (2) with p switched within
PN with PS algorithm and that with p replaced with p∗ can be arbitrarily close. Therefore, the underlying invariant sets
(attractors in our case) are also arbitrarily (AI ) close ([19], Ch. 6).
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Due to the mentioned convexity property, whatever kind of combinations of pi and mi values are considered for a fixed
N , p∗ will still belong to the interval (p1, pN ). Therefore, for p we can chose any kind of piecewise continuous functions,
with the only condition that their values and p∗ belongs within PN (see examples in [11]).

The proof of the convergence (analytically or numerically verified) does not depends on the periodicity of p but only
on the convexity of p∗. Therefore, it is obvious that not only periodic schemes (7) can be used, but even random ones [1].
One of the simplest way to implement randomly the PS algorithm, once N is fixed, is to chose first pi and mi in some
random manner, after which the PS algorithm is started (see the example of Sprott system, Subsection 4.3). Obviously,
there are several other random ways such as: choosing randomly mi and pi while the PS is running, or switching the
order of pi and so on. Now, the averaged p∗ has to be determined with the following relation

p∗ =

N∑
i=1

m,
ipi

N∑
i=1

m,
i

, (8)

where m
′

i denote the number of times when pi is chosen by the algorithm for t ∈ I.

Remark 6. (i) The “structural stability” of the PS algorithm presents some obvious limitations due firstly to his numerical
approach (some details and other related aspects can be found in [1]). For example, for relative large values of mi, the
trajectory of A◦ could present some “corners” (a maximum difference between mi should generally be about (20÷ 25)h).
The values for pi could be taken over the entire set PN without distinguishable differences between A◦ and A∗. Excessive
number of decimals for p∗ could lead too to some differences between the two attractors A◦ and A∗. Even for large values
for N, A◦ and A∗ still remain close each other;
(ii) The cross-correlation and time series show an interesting characteristic: the trajectories corresponding to A◦ and A∗,
even in the phase space and time representations are AI, they are dephased in time (see cross-correlation in the figures);
(iii) For chaotic attractors, the AI is obtained only “asymptotically” since the necessary time to fully approximate the
attractor is, theoretically, infinite.

The PS algorithm can be used to “control” or “anticontrol” dynamical systems modeled by the IVP (2) when some targeted
parameter value cannot be accessed directly (see [4]). For this purpose, we have to choose pi, mi and some scheme Sh to
obtain the targeted value p∗. However, while almost all known control/anticontrol algorithms “force” some trajectory to
change its characteristics and behavior, the PS algorithm allows to obtain any desired already existing attractor of AN .

4 Applications

This section is devoted to the applications of the PS algorithm to the four classes of dynamical systems (see Tables 1 and
2) to synthesize attractors. In this purpose we have to choose N,PN and Sh for each system, such that a desired value p∗

(which can be taken e.g. from the bifurcation diagram) is obtained.
To apply the PS algorithm for CI systems, we used the standard Runge-Kutta method (with the step size h of order

between 10−4 and 10−2, depending on the characteristics of the considered system), while for the discontinuous and
fractional systems, we have chosen special numerical methods. The bifurcation diagrams, time series, histograms and
cross-correlations were determined and plotted superimposed for the first state variable x1. The Poincaré sections have
been determined for the plane x3 = const. Some bifurcation diagrams, like the one for the Sprott system and especially
for the fractional Lü and Chua systems, require an extremely long computer time (see Appendix D ). For discontinuous
systems (of integer and fractional order), some ’corners’ can be remarked, typical for these kind of systems (the solution
for the underlying IVP are generally not smooth [12, 25]). As stated before, the AI was verified for all the considered
systems via superimposed phase portraits, Poincaré sections, histograms, time series and also with cross-correlation and
Hausdorff distance. For all the considered cases, the results lead to the same conclusion: Lemma 1 applies to all considered
classes of systems.
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4.1 Continuous dynamical systems of integer order

The PS algorithm was tested on several examples of CI systems such as: Lorenz, Chen, Rössler, Rabinovitch-Fabrikant
[1], Hindmarsh-Rose neuronal system [5], networks [6] and Lotka-Volterra [7]. Here, we consider the representative case
of the Lorenz system.
For this class of systems, the IVP (2) has to be considered for the particular case q = 1 and C = On×n, namely (Table 2)

ẋ = f(x) + pBx, x(0) = x0, t ∈ I. (9)

The used numerical method is the standard Runge-Kutta with integration step-size h = 0.01.

• Let first consider the scheme (7) for N = 2: [m1p1, m2p2] with p1 = 90, p2 = 96, and m1 = m2 = 1. Then p∗, given
by the relation (3), is p∗ = (m1×p1+m2×p2)/(m1+m2) = 93. Applying the PS algorithm, the synthesized attractor
A◦ (red plot, Fig.6 a) is a stable limit cycle that is AI with the average attractor A∗ (superimposed blue plot over
A◦) for p∗ = 93. The AI is emphasized in addition to the over-plot in the phase space, by the superimposed Poincaré
sections with the plane x3 = 130 (Fig.6b) and superimposed histograms for the first state variable x1 too (Fig.6c ).
The cross-correlation (Fig.6 d) shows that the time series corresponding to A◦ and A∗ are AI, but dephased. This
time-difference between the corresponding trajectories is better remarked from the time series corresponding to the
first component x1 (see Fig.6 e).

• Let next consider the case N = 5 with the scheme [2p1, 3p2, 2p3, 4p4, 3p5] for p1 = 125, p2 = 130, p3 = 140, p4 = 144
and p5 = 220. In order to facilitate the use of the PS algorithm, the bifurcation diagram will be used (Fig.7). Now,
p∗ = 154, and the synthesized attractor A◦ is again a stable limit cycle which is AI with A∗ (Fig.8 f) even A1−4 are
chaotic and only A5 is a stable limit cycle (Fig.8 a-e). Both attractors A◦ and A∗ are AI (see Fig.8 g-h wherefrom
the AI property can be remarked). The time series being dephased (Fig.8 i,j), the trajectories of the attractors A◦

and A∗ are AI, but time dephased.

• If for the same scheme [2p1, 3p2, 2p3, 4p4, 3p5] we choose p5 = 166 instead p5 = 220, the synthesized attractor A◦ is
chaotic and AI with A∗ for p∗ = 142.428 (Fig.9). However, now the AI is only an almost identity (see Remark 6
(iii)). The Poincaré section (Fig.9 c) was obtained with the plane x3 = 145. The cross-correlation shows that the
underlying trajectories of A◦ and A∗ are dephased. Because the trajectories are chaotic, the time series to underline
this time-difference is irrelevant in this case.

For all analyzed examples, the Hausdorff distance was of order 10−3.
Other examples of CI systems can be found in [11].

4.2 Continuous dynamical systems of fractional order

Fractional mathematical concepts allow to describe certain real objects more accurately than the classical “integer”
methods. Examples of such real objects that can be elegantly described with the help of fractional derivatives displaying
fractional-order dynamics, may be found in many fields of science and exhibit a wide range of rich dynamics. Therefore,
the fractional calculus starts to attract increasing attention of mathematicians but also of physicists and engineers (see
e.g. [26, 27, 28, 29]).

Many CF systems, can be modeled by the IVP (2) with q ∈ (0, 1) and C = On×n. The fractional derivative dq

dtq is
generally denoted using the Caputo differential operator of order q , Dq

∗ (see e.g. [30]). Thus, the IVP (2) becomes

Dq
∗x = f(x) + pBx, x(k)(0) = x

(k)
0 , (k = 0, 1, . . . , dqe − 1). (10)

d.e denotes the ceiling function that rounds up to the next integer, and Dm
∗ = dm

dtm , with m = dqe, is the standard
differential operator of the integer order dqe ∈ N. The Caputo operator, with starting point 0, has the following expression

Dq
∗x(t) =

1

Γ(m− q)

∫ t

0

(t− τ)m−q−1Dm
∗ x(τ)dτ.

7



where Γ is the Gamma function (Appendix D). Because Dq
∗ has an m-dimensional kernel, m initial conditions need to be

specified. Therefore, for the common case chosen in this paper 0 < q < 1, we have to specify just one condition, in the
classical form [31]: x(0)(0) = x0.

To implement the PS algorithm in this case, it is necessary to choose a numerical method for the solution to the IVP
(10). In this purpose we use the fractional Adams- Bashforth- Moulton method (see Appendix D) introduced in [31].
Let choose for our purpose the fractional variant of the Lü system (see Table 2) which unifies the Lorenz and Chen systems,
presented by Lü et al. in [32]. As many of the real fractional systems have the order of the fractional differential operators
less than 1, we fix in this paper q = 0.9 (see [33]) which is a typical value exhibiting all the relevant phenomena (the
dynamics of this system, as q varies, can be found in [16], while some aspects of the attractors synthesis of the fractional
Lü system is presented in [34]).
Now, the IVP (10) was integrated with the fractional Adams-Bashforth-Moulton method with step size h = 0.005 and
15000÷ 20000 steps, in function of the dynamics of the synthesized attractor A◦.

• A chaotic attractor A◦ can be obtained with the scheme [1p1, 1p2] (see Fig.10 c) with p1 = 32 and p2 = 34.5. The
attractors corresponding to p1 and p2 are plotted in Fig.10 a, b which, as can be seen in the bifurcation diagram
in Fig.11, are stable limit cycles. p∗ = 33.25, and due to the chaotic behavior, the AI between A◦ and A∗ is only
asymptotic (see the histograms in Fig.10 d and the Poincaré sections in Fig.10 f). Even A◦ and A∗ are chaotic, from
the cross-correlation (Fig.10 e), one can see that they are dephased, but still AI.

• If we choose the scheme [1p1, 1p2], with p1 = 33.5 and p2 = 35.5, a stable limit cycle A◦, for which p∗ = 34.5,
is obtained (Fig.12). The AI can be remarked from the Poincaré section and histograms (Fig.12 b,c). Again, the
time difference between the underlying time series can be seen from the cross-correlations (Fig.12 d) and time series
(Fig.12 e)

For all tested CF systems, the Hausdorff distance was only of order of 10−2, compared e.g. with CI systems, where it was
of order of 10−3. This is explainable due to the well known O(h2) error bound for the used one-step Adams-Bashforth-
Moulton method for fractional systems (detailed discussions on errors can be found in [13]).

4.3 Discontinuous dynamical systems of integer order

Differential equations with discontinuous right-hand side, model a whole variety of realistic applications: dry friction,
electrical circuits, oscillations in visco-elasticity, brake processes with locking phase, oscillating systems with viscous
dumping, electro-plasticity, convex optimization, control synthesis of uncertain systems and so on (see e.g. [35, 36, 37]
and the references therein).

For our class of DI systems, q = 1 and C 6= On×n and the IVP (2) becomes

ẋ = f(x) + pBx+ Cs(x), x(0) = x0, t ∈ I. (11)

In this case, the right-hand side is discontinuous for a null set of points M where s vanishes, and continuous in D = Rn\M1.
Obviously, the IVP (11) cannot be solved with classical methods. For example, for the equation

ẋ = 2− 3sgn(x), (12)

where M = R\(D1

⋃
D2) = {0} with D1 = (−∞, 0), D2 = (0,∞), the classical solutions, for x 6= 0, are

x(t) =

{
5t+ C1, x < 0,
−t+ C2, x > 0,

(13)

with the integration constants C1, C2 but, as t increases, these solutions tend to the line x = 0, where they cannot continue
to evolve along this line since the function x(t) = 0 does not satisfy the equation (Fig.13). Thus, there is no classical
solution starting from 0.

1In [38] a classification of systems modeled by the IVP (11) is presented.
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Therefore, the problem has to be restarted as a differential inclusion by using, for example, the Filippov regularization
(Appendix E). Thus, the IVP (11) transforms into a differential inclusion (set-valued IVP)

.
x ∈ f(x) + pBx+ CS(x), x(0) = x0, for almost all t ∈ I,

where S is the setvalued variant of s. On mild assumptions, a differential inclusion has a solution that happens to be
even unique, but it could have multiple solutions too. To find them numerically, in our particular case of the IVP (11),
we can use the standard Runge-Kutta method within D and a special numerical method for differential inclusions in M
(the simplest forward Euler method here, see Appendix E).
Once we set the numerical method for the IVP (11), we can apply the PS algorithm. For this class of DI systems, we
choose the Sprott system [15] (Table 2).

• First, let us choose N = 2 and the scheme [1p1, 1p2] for p1 = 0.5 and p2 = 0.528, for which the corresponding
attractors A1 and A2 are chaotic (Fig.14). We have chosen this scheme such that the obtained average value
p∗ = 0.514 belongs to a stable periodic window in the bifurcation diagram. Therefore, the synthesized attractor
is a stable limit cycle (Fig.15 c). The AI is underlined by the superimposed Poincaré sections (with the plane
x3 = 0, Fig.15 d) and histograms (Fig.15 e). The time-difference between the trajectories is remarked from the
cross-correlation (Fig.15 f) and time series (Fig.15 g).

• As seen in Section 3, PS algorithm can be implement in random manners too. For example, for N = 100 if one
choose randomly mi ∈ {1, 2, 3} and pi ∈ [0.45, 0.65] for i = 1, 2, . . . , 100 with uniform distribution, and with the
obtained values we launch PS, the synthesized attractor A◦ is still AI to the average attractor A∗ (Fig.16). However,
taking into account the asymptotic generation of chaotic attractors, and the relative large value for N , the small
differences between the two attractors, A◦ and A∗ are explainable.

4.4 Discontinuous dynamical systems of fractional order

There are real discontinuous dynamical systems which display fractional-order dynamics. We consider here the following
class of DF systems, modeled by the IVP (2) for C 6= On×n and p < 1

dqx

dtq
= f(x) + pBx+ Cs(x), x(0) = x0, t ∈ I. (14)

In [39] it is proven that the IVP admits solutions which can be numerically determined.
Shortly, the IVP is transformed first into a differential inclusion via the Filippov regularization (as in Subsection 4.3).
Next, using the Cellina’s theorem (see e.g. [40, p. 84]) the set-valued IVP of fractional-order is transformed into a
continuous single-valued of fractional-order IVP (see for continuous approximation of DI systems the way chosen in
[41]). The approximation is made in a sufficiently small ε-neighborhood of the discontinuity points. To be precise, let us
consider the simplest example of the scalar function, widely used in examples: s(x) = c sgn(x). To approximate s(x) in
an ε-neighborhood of x = 0, we can choose one of the simplest function, the sigmoid hε

hε (x) = c

(
2

1 + e−x/ε
− 1

)
. (15)

For our general case of the IVP (14), the continuous approximation leads to the following continuous IVP of fractional-order

dqx

dtq
− f(x)− pBx =

{
Cs(x), for x /∈M,
hε(x), for x ∈M,

(16)

where hε(x) is the ε-approximation of Cs(x) in the ε-neighborhood of the points x ∈M , verifying the continuity condition
hε(x) = Cs(x) on the boundary of the ε-neighborhood [41]. In this way, the discontinuous IVP became a continuous one of
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fractional order and a numerical scheme for fractional-order differential equations, such as the Adams-Bashforth-Moulton
method presented in Subsection 4.2, can be used.

We consider for this case the fractional variant of a discontinuous Chua system presented by [17] (Table 2) for q = 0.98
(smaller values gives not rich dynamics).
As it can be seen from the bifurcation diagram (Fig.17), for p ∈ (12, 12.55), there exists a narrow band of a kind of
“chaotic saddle”. Within this window, the underlying chaotic attractors look as being “embedded” within this transient
chaos (see for example the attractor A1 in Fig.18)).

• Using the scheme [2p1, p2] with p1 = 12.5 and p2 = 17, the obtained synthesized attractor A◦ is AI with A∗ for
p∗ = 14 (Fig.18).

As shown in [33], we found numerically that in these systems of lower than third-order (i.e. 3∗q which, for q < 1, is less
than 3) chaos still may appear (as it is known, in the case of integer order, according to the well-known Poincaré-Bendixon
theorem, chaos appears only at systems of minimum order three).

Conclusions

In this review we have presented the parameter switching algorithm according to which any attractor of a dynamical
system belonging to a large class of systems, may be numerically approximated (synthesized). The attractors synthesis is
achieved by using the PS algorithm, which switches periodically or randomly the parameter. This facility is enabled by
the convexity of p. The average and synthesized attractors are AI and their underlying trajectories, time dephased. The
review is legitimated by the more than ten published papers each of them containing several applications.

As expected, the performance of the PS algorithm is limited due to the errors of the used numerical method, the
length of the time-subintervals Ik, k = 1, 2, ..., N , the number of digits for p, the step size h and the distance in the
parameter space between pk. Thus, we found that N is not a critical parameter (it could be even about 100). The length
of Ik (i.e. the value for mk) is a critical parameter indicating for how long time the control parameter of the considered
system can take the values p = pk. We found that a maximum value for mk can be taken about 25h. For p, 3− 4 digits
are enough to be compatible with the smallest distance between the pk in the bifurcation diagrams. Moreover, some
real physical chaotic systems may have an infinite number of different states or limit cycles with infinite period. But a
computer simulated system has a finite number of states; if the precision of the computer is n bits and the system to be
modeled has k variables, the total number of system states is limited to 2k∗n; hence, given a determined state, it will be
repeated sooner or later and the system will become periodic, with a period equal to the separation of the two occurrences
of the state. The PS method can alleviate this inaccuracy and make possible the approximation of a computer simulated
system to a real one, although it may be necessary to use a sequence of parameter values lasting as the whole segment of
the system to be modeled (se e.g. [42]).

Some open problems are: the analytical proofs for the Lemma 1 for CF, DI and DF systems, not only for CI as done
in [11]; an analytical proof for the continuity of the bijection F ; a detailed study of the time delay between the trajectories
of A◦ and A∗; the effect of noise on the results; a comparison with the complex systems (fractals), where the parameter
switching may lead also to some interesting results [8].

APPENDIX

A Cross Correlation

As known, the cross-correlation of two signals is a measure of the similarity of two waveforms. The cross-correlation has
ranges from -1.0 to +1.0. The closer it is to +1 or −1, the more closely the two compared variables are related. The
correlation of two signals (the attractors underlying trajectories in our case) may indicate that one of them is delayed in
time with respect to the other. The maximum value (close to unity) of this cross-correlation is obtained when the two
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signals are in closest alignment with each other. The value −1 means the signals are identically matched but opposite in
phase, while a value approaching zero indicates a low degree of similarity (see the blue band around the horizontal axe
in our images). In this paper, the results were obtained with the crosscorr Matlab function with approximate 95 percent
confidence interval.

B Hausdorff distance

The Hausdorff distance in a metric space, measures how far two compact nonempty subsets are from each other. The
classical Hausdorff distance between two (finite) sets of points, A and B, is defined as [43, p.114]

DH(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
,

where d(x, y) is the classical distance between two points in the considered space.
If the two sets are curves, DH is defined as the maximum distance to the closest point between the curves. Thus, if the
curves are defined as the sets of ordered pair of coordinates A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} the distance to
the closest point between a point ai to the set B is

d(ai, B) = min
j
‖bj − ai‖ .

Thus, the Hausdorff distance is

dH(A,B) = max

{
max

i
{d(ai, B)} ,max

j
{d(bj , A)}

}
.

C Sketch of the analytical proof of Lemma 1

Next, the main steps of the proof presented in [11] for the lemma, ensuring the AI between A◦ and A∗ in the case of CI
systems, are pointed out.

Consider the IVP (1) with C = On×n and q = 1 satisfying the assumptions stated in Section 2 and expressed for the
general case of Rn, in the following form

ẋ(t) = f(x(t)) + p (t/λ)Bx(t), x(0) = x0, t ∈ I = [0,∞), (17)

where λ ∈ R∗+ is a positive real number which will be stated later, and p : I → Rn is considered as a piecewise continuous
periodic function with period T0, and mean value q, i.e.

1

T0

∫ t+T0

t

p(u)du = q, t ∈ I.

Let us define the average model of (17) obtained with the PS algorithm, expressed as follows

ẏ = f(y) + qBy, y(0) = y0. (18)

The IVP (17) models the PS algorithm and generates the synthesized attractor A◦, while the IVP (18) represents the
system whose solution approximates the average attractor A∗.
We have to prove that the solutions of the equations (17) and (18) differ by less than λ2 for λ sufficiently small, via the
so called order function defined in terms of approximations2.
Let next suppose that (18) satisfies the assumption H1 and admits s : I → R as the unique solution.

2The order function δ(λ2), introduced in [44, p.11], implies that there exists k s.t. |δ(λ2)| ≤ kλ2 when λ is sufficiently small.
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Linearizing (18) on a neighborhood of s, one obtains the following IVP

ε̇(t) = [E(t) + qB]ε(t), ε(0) = ε0, (19)

where ε(t) = y(t)− s(t) and E(t) denotes the Jacobian of f evaluated at s(t).
Because s(t) is the solution in (18), ε(t) = 0 for t ∈ I, should be a solution of (19).
If we linearize the IVP (17) for x ∈ Γs (the domain of attraction of ε = 0) one obtains

ė(t) = [E(t) + p(t/λ)B]e(t), e(0) = e0,

where e(t) = x(t)− s(t).
Then, the theorem ensuring the AI between the attractors of the dynamical system modeled by the IVP (17) and IVP
(18) can be enounced.

Theorem Let assume that Eq. (19) is uniformly exponentially stable, i.e. there exist the constants K > 0, µ > 0 such
that

ε(t) ≤ K||ε0|| exp(−µt).

Then, for e0 = ε0, there exists a positive scalar λ > 0, such that limt→∞ ||e(t) − ε(t)|| = δ(λ2), where δ(λ2) is an order
function.

Proof. The complete proof can be found in [11] and it mainly follows the idea given in Chapter 4 of [44]. The existence
interval I is partitioned as follows: I = [0, λT ]

⋃
[λT0, 2λT0] · · · . In each subinterval In = [nλT0, (n+ 1)λT0] , n = 1, 2, . . .,

Eq. (19) has the solution εn(t). If on these subintervals, the initial condition is chosen εn(nλT0) = e(nλT0), using a
generalized Peano-Baker series [45], the Gronwall’s inequality, through straightforward algebraic operations, the following
inequality is inductive proved

||e((n+ 1)λT0)− εn((n+ 1)λT0)|| ≤ δ(λ2),

for any n. Taking the limit n→∞, the proof is complete.

D Adams-Bashforth-Moulton scheme for fractional ODEs

Next, a brief presentation of the Adams-Bashforth-Moulton scheme [31] is presented. Let consider the IVP (10). Specifi-
cally, the method implies a discretization of I with grid points ti = hi, i = 0, 1, . . . with a preassigned step size h. First,
a preliminary approximation xPi+1 for x(ti) (the predictor phase) is computed via the formula

xPi+1 =

dqe−1∑
j=0

tji+1

j!
x
(j)
0 +

1

Γ(q)

i∑
j=0

bj,i+1g(xj),

where bj,i+1 have the form

bj,i+1 =
hq

q
((i+ 1− j)q − (i− j)q) .

Then, the final approximation xi+1 for x(ti+1) (the corrector phase) is

xi+1 =

dqe−1∑
j=0

tji+1

j!
x
(j)
0 +

hq

Γ(q + 2)

 i∑
j=0

aj,i+1g(xj) + g(xPi+1)

 ,

with
a0,i+1 = iq+1 − (i− q)(i+ 1)q,
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and
aj,i+1 = (i− j + 2)q+1 + (i− j)q+1 − 2(i− j + 1)q+1,

for j = 1, 2, . . . , i.
The Gamma function, Γ, is approximated in this work with the so-called Lanczos approximation [46]

Γ(z) =

∑6
i=0 piz

i∏6
i=0(z + i)

(z + 5.5)z+0.5e−(z+5.5).

for z ∈ C with Re(z) > 0. The coefficients pi are shown in Table 4.
While in the standard methods for ODEs of integer order, the current approximation xk depends only on the results

of a few backward steps, like all reasonable numerical methods for fractional differential equations, the fractional scheme
Adams-Bashforth-Moulton requires the entire backward integration history at each point in time. Thus, each calculated
value xk depends on all previous values x0, x1, . . . , xk−1. This characteristic implies a serious drawback with respect to the
required computing time. For example, to obtain 4000 points within some attractor, about 8×106 iterations are necessary.
However, this is necessary to appropriately reflect the memory effects possessed by fractional differential operators.
A detailed analysis of this method can be found in [13] and a background on fractional differential equations is presented
in [14].

E Filippov regularization

Let consider the following general IVP with discontinuous right-hand side

ẋ = f(x), x(0) = x0, t ∈ I, (20)

with f locally bounded on Rn. In particular, the discontinuity is due to the discontinuity of the state variable, of the
associated vector field, of Jacobian (partial derivatives) or higher order discontinuity. The continuity domain consists in
a finite m number of open regions Di ⊂ Rn, i = 1, 2, . . . ,m, the discontinuity set M being M = Rn\

⋃m
i=1Di.

The IVP (20) may have not any solutions in the classical sense. Therefore, in this paper we have chosen the way given by
[47], which transforms the IVP (20), via the differential inclusion approach, into a multi-valued Cauchy IVP

ẋ ∈ F (x), x(0) = x0, for almost all t ∈ I, (21)

where, F : Rn ⇒ Rn is a set-valued function into the set of all subsets of Rn. For our class of systems, F can be defined
using the so called Filippov regularization

F (x) = con lim
x′→x

f(x′),

where con means the convex hull and limx′→x f(x′) represents the set of all limits for all convergent sequences f(xk) with
xk → x. For x ∈M , F (x) is a set, while for x /∈M , F (x) consists in a single point f(x). As example, for the sign function
the Filippov regularization gives the following set-valued function

Sgn(x) =

 {−1}, x < 0,
[−1, 1] x = 0,
{+1} x > 0.

For example, the Filippov regularization applied to the Example (12) leads to the following differential inclusion

ẋ ∈ 2− 3Sgn(x). (22)

Definition [47] A generalized solution (or Filippov solutions) of the IVP (20) is an absolutely continuous vector-valued
function x : I → Rn verifying the IVP (21) for a.a. t ∈ I.
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Even the IVP (20) may have no classical solutions, the setvalued IVP (21) may have a unique or several generalized
solutions. For example, the equation (12), after regularization becomes the set-valued problem (22) and has the following
generalized solutions: if x0 > 0, then x(t) = −t+ x0 for t < x0 and x(t) = 0 for t ≥ x0. In other words, the solution can
be prolonged continuous along the axis x = 0. If x′0 < 0, the solution is x(t) = 5t+ x′0 for t < x′0 and x(t) = 0 for t ≥ x′0
(Fig.13)

The background of differential inclusions and their solutions can be found e.g. in [40] and [48]. The existence and
uniqueness of solutions for our class of DI systems are presented in [49] and will be not considered here.

To solve numerically the IVP (20) special numerical methods for differential inclusions are necessary. However, for our
class of IVPs, due to the presence of s functions, the discontinuity appears only in a finite null set M, where actually the
IVP is a set-valued problem. For the points x ∈ Di, the IVP is a continuous problem. Therefore, we can integrate in Di

the IVP (20) using e.g. the standard Runge-Kutta method, while for x ∈ M , a numerical method for the corresponding
differential inclusion ẋ ∈ F (x) has to be used. Precisely, when the trajectory enters the discontinuity surface, we have
to choose for derivative of solution, generally for some finite time, a value within the set F (x) while a numerical method
for differential inclusions is used (the simplest one is the adapted forward Euler method see e.g. [12, 25]). For example,
when x = 0 in the Example (12), we have to solve the differential inclusion ẋ ∈ [−1, 5]. There are several possibilities to
manage this problem using e.g. so called selection strategies (see [50]). In this paper we used the simplest way, namely
the random strategy which implies a randomly choice of a value within F (x) (the interval [−1, 5] in our example). There
are several possibilities to find the moments when the trajectory enters and leaves the discontinuity surfaces (see e.g. [37])
during which the chosen method solves the differential inclusion.
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Table 1: Classification of the considered dynamical systems modeled by the IVP (1).

C = 0n×n C 6= 0n×n

q = 1 Continuous of Integer order (CI) systems Discontinuous of Integer order (DI) systems
q ∈ (0, 1) Continuous of Fractional order (CF) systems Discontinuous of Fractional order (DF) systems

Table 2: Systems utilized in this paper.

Type Order System q f(x) B C

C
o
n
ti

n
u

o
u

s

In
te

g
er

Lorenz
ẋ1 = 10(x2 − x1)
ẋ2 = −x1x3 − x2 + px1
ẋ3 = x1x2 − 8

3
x3

1

 10(x2−x1)
−x1x3−x2
x1x2− 8

3
x3

  0 0 0
1 0 0
0 0 0

 O3×3

C
o
n
ti

n
u

o
u

s

F
ra

ct
io

n
a
l Lü

dqx1
dtq

= −x1 + px2
dqx2
dtq

= −x1x3 + 28x2
dqx3
dtq

= x1x2 − 3x3

q < 1

 x1
−x1x3+28x2
x1x2−3x3

  0 1 0
0 0 0
0 0 0

 O3×3

D
is

co
n
ti

n
u

o
u

s

In
te

g
er

Sprott
ẋ1 = x2
ẋ2 = x3
ẋ3 = −x1 − x2 − px3 + sgn(x1)

1

 x2
x3

−x1−x2

  0 0 0
0 0 0
0 0 −1

  0 0 0
0 0 0
1 0 0



D
is

co
n
ti

n
u

o
u

s

F
ra

ct
io

n
a
l Chua

dqx1
dtq

= −2.57x1 + 9x2 + 3.86sgn(x1)

dqx2
dtq

= x1 − x2 + x3
dqx3
dtq

= −px2

q < 1

 −2.57x1+9x2
−x1−x2+x3

0

  0 0 0
0 0 0
0 −1 0

  3.86 0 0
0 0 0
0 0 0



Table 3: Pseudo-code of the PS algorithm

CHOOSE Sh, T, h
REPEAT

FOR i = 1 to N
FOR k = 1 to mi

one step integration of the IVP (2) for p = pi
t = t+ h

ENDFOR
ENDFOR

UNTIL t ≥ T
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Table 4: Coefficients of the Lanczos approximation.

i pi

0 75122.6331530
1 80916.6278952
2 36308.2951477
3 8687.2452971
4 1168.9264948
5 83.8676043
6 2.5066283
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Figure 1: Piecewise constant periodic function p : I → R (sketch).
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Figure 2: Time subintervals Ii1, i = 1, 2, 3 and 4 (sketch)

Figure 3: Bijection F : PN → AN (sketch).
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Figure 4: Order induced by F in AN .

Figure 5: Attractor synthesis: sketch of the proof of Theorem 1.
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Figure 6: Scheme [m1p1,m2p2] with m1 = 90, m2 = 96, and p1 = p2 = 1 applied to the Lorenz system. p∗ = 93. (a) A◦

and A∗; (b) Poincaré sections; (c) Histograms; (d) Cross-correlations; (e) Time series.
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Figure 7: Bifurcation diagram for the Lorenz system.
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Figure 8: Scheme [2p1, 3p2, 2p3, 4p4, 3p5] for p1 = 125, p2 = 130, p3 = 140, p4 = 144 and p5 = 220 applied to the Lorenz
system. p∗ = 154. (a)-(e) The attractors Ai corresponding to pi, i = 1, . . . , 5; (f) A◦ and A∗; (g) Histograms; (h) Poincaré
sections; (i) Cross-correlations; (j) Time Series.
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Figure 9: Same scheme as in Fig.8: [2p1, 3p2, 2p3, 4p4, 3p5] but with p5 = 166 instead p5 = 220. p∗ = 142.428. (a) A◦ and
A∗; (b) Histograms; (c) Poincaré sections; (d) Cross-correlations.
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Figure 10: Scheme [1p1, 1p2] with p1 = 32 and p2 = 34.5 applied to the fractional Lü system. p∗ = 33.25. (a),(b) The
attractors, A1 and A2; (c) The attractors A◦ and A∗; (d) Histograms; (e) Cross-correlations; (f) Poincaré sections.
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Figure 11: Bifurcation diagram for the Lü system.
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Figure 12: Scheme [1p1, 1p2], with p1 = 33.5 and p2 = 35.5 for the Lü system. p∗ = 34.5. (a) A◦ and A∗; (b) Poincaré
sections; (c) Histograms; (d) Cross-correlations; (e) Time series.
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Figure 13: Generalized solutions of the equation (12) (Sketch).
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Figure 14: Bifurcation diagram for the Sprott system.
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Figure 15: Scheme [1p1, 1p2] for p1 = 0.5 and p2 = 0.528 applied to the Sprott system. p∗ = 0.514. (a),(b) A1 and A2; (c)
A◦ and A∗; (d) Poincaré sections; (e) Histograms; (f) Cross-correlations; (g) Time series.
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Figure 16: Chaotic PS algorithm applied to Sprott system for N = 100 and random with uniform distribution choice for
mi: mi ∈ 1, 2, 3 and pi ∈ [0.45, 0.65]. (a) A◦ and A∗; (b) Poincaré sections; (c) Histograms; (d) Cross-correlation.
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Figure 17: Bifurcation diagram for the fractional Chua system.
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Figure 18: Scheme [2p1, p2] with p1 = 12.5 and p2 = 17, applied to the fractional Chua system. p∗ = 14. (a),(b) A1 and
A2; (c) A◦ and A∗; (d) Poincaré sections; (e) Histograms; (f) Cross-correlations.
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