Skip to main content
Log in

Tuning the cellular uptake and cytotoxicity of carbon nanotubes by surface hydroxylation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes named CNTan, CNTox, and CNTir were prepared by high temperature annealing, acid oxidation and gamma irradiation, respectively. Their morphology, metal contents and surface properties were characterized by a series of techniques. The effects of surface hydrophilicity on their cell uptake efficiency and cytotoxicity were evaluated by radio-labeling techniques and several biological assays. Results showed that the CNTs possess similar diameters, lengths and metal contents, but different surface hydrophilicity. All of these CNT samples were readily taken up by Hela cells within 2 h, and their cell uptake ratio showed a positive correlation with their surface hydrophilicity in the following order: CNTir > CNTox > CNTan. Among these CNT samples, CNTan exhibited the lowest cytotoxicity to Hela cells due to its severe agglomeration. Although the cell uptake efficiency of CNTir was greater than that of CNTox, their cytotoxicity showed no significant difference, and other factors such as serum protein coating, and incubation time could also influence their cytotoxicity. These conclusions demonstrated that surface hydrophilicity of MWCNTs could alter their cell uptake efficiency, underlining the possibility for rational design of CNT-specific surface properties for their further development in biomedical fields and a mechanistic understanding of observed CNT toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126

    Article  CAS  Google Scholar 

  • Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126:15638–15639

    Article  CAS  Google Scholar 

  • Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    Article  CAS  Google Scholar 

  • Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, Mou CY, Chen YC, Huang DM (2007) The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28:2959–2966

    Article  CAS  Google Scholar 

  • Clift MJD, Bhattajarhee S, Brown DM, Stone V (2010) The effects of serum on the toxicity of manufactured nanoparticles. Toxicol Lett 198:358–365

    Article  CAS  Google Scholar 

  • Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    Article  CAS  Google Scholar 

  • Cui HF, Sandeep Kumar V, Al Rubeaan K, Luong JHT, Sheu FS (2010) Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem Res Toxicol 23:1131–1147

    Article  CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  CAS  Google Scholar 

  • Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Pinero E, Béguin F, Fonseca A, Nagy JB, Lison D, Fubini B (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol 21:1690–1697

    Article  CAS  Google Scholar 

  • Grabinski C, Hussain S, Lafdi K, Braydich-Stolle L, Schlager J (2007) Effect of particle dimension on biocompatibility of carbon nanomaterials. Carbon 45:2828–2835

    Article  CAS  Google Scholar 

  • Guo J, Li Y, Wu S, Li W (2005) The effects of γ-irradiation dose on chemical modification of multi-walled carbon nanotubes. Nanotechnology 16:2385–2388

    Article  CAS  Google Scholar 

  • Guo L, Morris DG, Liu X, Vaslet C, Hurt RH, Kane AB (2007) Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater 19:3472–3478

    Article  CAS  Google Scholar 

  • Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033

    Article  CAS  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  Google Scholar 

  • Jin CY, Zhu BS, Wang XF, Lu QH (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21:1871–1877

    Article  CAS  Google Scholar 

  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100

    Article  CAS  Google Scholar 

  • Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026

    Article  CAS  Google Scholar 

  • Kam NWS, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube—protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Article  CAS  Google Scholar 

  • Kane AB, Hurt RH (2008) Nanotoxicology: the asbestos analogy revisited. Nat Nanotechnol 3:378–379

    Article  CAS  Google Scholar 

  • Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113

    Article  CAS  Google Scholar 

  • Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  Google Scholar 

  • Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699

    Article  CAS  Google Scholar 

  • Liu X, Gurel V, Morris D, Murray DW, Zhitkovich A, Kane AB, Hurt RH (2007a) Bioavailability of nickel in single-wall carbon nanotubes. Adv Mater 19:2790–2796

    Article  CAS  Google Scholar 

  • Liu Z, Winters M, Holodniy M, Dai H (2007b) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed 46:2023–2027

    Article  CAS  Google Scholar 

  • Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Article  CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • Paoletti F, Mocali A (1990) Determination of superoxide dismutase activity by purely chemical system based on NAD (P) H oxidation. Meth Enzymol 186:209–220

    Article  CAS  Google Scholar 

  • Park EJ, Park K (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184:18–25

    Article  CAS  Google Scholar 

  • Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  CAS  Google Scholar 

  • Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  CAS  Google Scholar 

  • Raja P, Connolley J, Ganesan GP, Ci L, Ajayan PM, Nalamasu O, Thompson DM (2007) Impact of carbon nanotube exposure, dosage and agglomeration on smooth muscle cells. Toxicol Lett 169:51–63

    Article  CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  CAS  Google Scholar 

  • Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047

    Article  CAS  Google Scholar 

  • Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212

    Article  CAS  Google Scholar 

  • Verma A, Uzun O, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–595

    Article  CAS  Google Scholar 

  • Warheit DB (2006) What is currently known about the health risks related to carbon nanotube exposures? Carbon 44:1064–1069

    Article  CAS  Google Scholar 

  • Warheit DB (2009) Long-term inhalation toxicity studies with multiwalled carbon nanotubes: closing the gaps or initiating the debate? Toxicol Sci 112:273

    Article  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  CAS  Google Scholar 

  • Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23:1418–1423

    Article  CAS  Google Scholar 

  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  • Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, Huang Q, Zhu Z (2010) Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett 198:237–243

    Article  CAS  Google Scholar 

  • Zhang X, Li J, Zhu Y, Qi Y, Zhu Z, Li W, Huang Q (2011a) Nanographene oxide labeling with 188Re. Nucl Sci Tech 22:99–104

    CAS  Google Scholar 

  • Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C, Huang Q (2011b) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49:986–995

    Article  CAS  Google Scholar 

  • Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3:191–192

    Article  CAS  Google Scholar 

  • Zhu Y, Li W, Li Q, Li Y, Zhang X, Huang Q (2009) Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 47:1351–1358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 10905086, 10975179), the Shanghai Municipal Natural Science Foundation (No. 08ZR1422700, 08JC1422600), the ministry of Health (No. 2009ZX10004-301), the CAS Innovation Program, and the MOST973 Program (No. 2006CB705605).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyong Zhang, Wenxin Li or Qing Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhu, Y., Li, J. et al. Tuning the cellular uptake and cytotoxicity of carbon nanotubes by surface hydroxylation. J Nanopart Res 13, 6941–6952 (2011). https://doi.org/10.1007/s11051-011-0603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0603-9

Keywords

Navigation