Skip to main content
Log in

Surface-enhanced Raman effect in ultra-thin CuPc films employing periodic silver nanostructures

  • Special Issue: Nanostructured Materials 2010
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to investigate the interaction of organic molecules with metals by means of Raman spectroscopy, special substrates were designed which combine interference and surface-enhancement mechanisms. Triangular shaped silver nanostructures with an angle bisector and a height of about 80 nm were prepared by nanosphere lithography on silicon substrates with a 100-nm oxide layer. Utilizing these substrates the dependence of the Raman signal intensity on the thickness of copper phthalocyanine (CuPc) was studied in the range from few percentages of a monolayer coverage up to 80 nm using an in situ setup. At an excitation in resonance with the plasmons of the nanostructures (2.6 eV) an increase of the signal was observed during film growth. Contrary to that, excitation at 1.92 eV in resonance with the CuPc absorption band leads to a strongly enhanced Raman signal for submonolayer coverage which hardly changes with the CuPc film thickness in the ultra-low coverage regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alessio P, De Saja Saez JA, Aroca RF, Constantino CJL (2011) Metal-organic semiconductor nanostructures for surface-enhanced Raman scattering. Appl Spectrosc 65:152–158. doi:10.1366/10-06101

    Article  CAS  Google Scholar 

  • Aroca R, Jennings C, Kovacs GJ, Loutfy RO, Vincett PS (1985) Surface-enhanced Raman scattering of Langmuir-Blodgett monolayers of phthalocyanine by indium and silver island films. J Phys Chem 89:4051–4054. doi:10.1021/j100265a025

    Article  CAS  Google Scholar 

  • Aroca R, Clavijo RE, Jennings CA, Kovacs GJ, Duff IJM, Loutfy RO (1989) Vibrational spectra of lutetium and ytterbium bis-phthalocyanine in thin solid films and SER(R)S on silver island films. Spectrochimica Acta 5:957–962. doi:10.1016/0584-8539(89)80154-0

    Google Scholar 

  • Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897. doi:10.1039/B710915F

    Article  CAS  Google Scholar 

  • Chen Q, Gu D, Shu J, Tang X, Gan F (1994) Optical and recording properties of copper phthalocyanine films. Mater Science nd Eng B 25:171–174. doi:10.1016/0921-5107(94)90220-8

    Article  CAS  Google Scholar 

  • Chizhov I, Scoles G, Kahn A (2000) The influence of steps on the orientation of Copper Phthalocyanine monolayers on Au(111). Langmuir 16:4358–4361. doi:10.1021/la9916225

    Article  CAS  Google Scholar 

  • Corio P, Rubim JC, Aroca R (1998) Contribution of the Herzberg-Teller mechanism to the surface-enhanced Raman scattering of Iron Phthalocyanine adsorbed on a Silver electrode. Langmuir 14:4162–4168. doi:10.1021/la980062r

    Article  CAS  Google Scholar 

  • Etchegoin PG, Le Ru EC (2008) A perspective on single molecule SERS: current status and future challenges. Phys Chem Chem Phys 10:6079–6089. doi:10.1039/b809196j

    Article  CAS  Google Scholar 

  • Gordan OD, Friedrich M, Zahn DRT (2004) The anisotropic dielectric function for copper phthalocyanine thin films. Organic Electronics 5:291–297. doi:10.1016/j.orgel.2004.10.001

    Article  CAS  Google Scholar 

  • Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611. doi:10.1021/jp010657m

    Article  CAS  Google Scholar 

  • Haynes CL, Yonzon CR, Zhang X, Van Duyne RP (2005) Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J Raman Spectrosc 36:471–484. doi:10.1002/jrs.1376

    Article  CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. doi:10.1021/jp026731y

    Article  CAS  Google Scholar 

  • Killian MM, Villa-Aleman E, Sun Z, Crittenden S, Leverette CL (2011) Dependence of surface-enhanced infrared absorption (SEIRA) enhancement and spectral quality on the choice of underlying substrate: a closer look at Silver (Ag) films prepared by physical vapor deposition (PVD). Appl Spectrosc 65:272–283. doi:10.1366/10-06176

    Article  CAS  Google Scholar 

  • Kovacs GJ, Loutfy RO, Vincett PS, Jennings C, Aroca R (1986) Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: evidence for the electromagnetic mechanism. Langmuir 2:689–694. doi:10.1021/la00072a001

    Article  CAS  Google Scholar 

  • Merlen A, Gadenne V, Romann J, Chevallier V, Patrone L, Valmalette JC (2009) Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates. Nanotechnol 20:215705. doi:10.1088/0957-4484/20/21/215705

    Article  CAS  Google Scholar 

  • Min Q, Pang Y, Collins DJ, Kuklev NA, Gottselig K, Steuerman DW, Gordon R (2011) Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles. Opt. Express 19:1648–1655. doi:10.1364/OE.19.001648

    Article  CAS  Google Scholar 

  • Mrozek I, Otto A (1989) SERS—a long-range effect. Appl Phys A 49:389–191. doi:10.1007/BF00615021

    Article  Google Scholar 

  • Nemanich RJ, Tsai CC, Connell GAN (1980) Interference-enhanced Raman scattering of very thin Titanium and Titanium oxide films. Phys Rev Lett 44:273–276. doi:10.1103/PhysRevLett.44.273

    Article  CAS  Google Scholar 

  • Schäfer P, Himcinschi C, Chis V, Zahn DRT (2010) In situ Raman growth monitoring of indium/copper phthalocyanine interfaces. Phys. Status Solidi C 7:232–235. doi:10.1002/pssc.200982484

    Article  Google Scholar 

  • Shoute LCT, Bergren AJ, Mahmoud AM, Harris KD, McCreery RL (2009) Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy. Appl Spectrosc 63:133–140. doi:10.1366/000370209787392102

    Article  CAS  Google Scholar 

  • Smardzewski RR, Colton RJ, Murday JS (1979) enhanced Raman scattering by pyridine physisorbed on a clean silver surface in ultra-high vacuum. Chem Phys Lett 68:53–57. doi:10.1016/0009-2614(79)80067-6

    Article  CAS  Google Scholar 

  • Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in Gold nanorods. Phys Rev Lett 88:077402. doi:10.1103/PhysRevLett.88.077402

    Article  Google Scholar 

  • Stenzel O, Stendal A, Roder M, Wilbrandt S, Drews D, Werninghaus T, von Borczyskowski C, Zahn DRT (1998) Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films. Nanotechnol 9:6–19. doi:10.1088/0957-4484/9/1/002

    Article  CAS  Google Scholar 

  • Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys: Condens Matter 4:1143–1212. doi:10.1088/0953-8984/4/5/001

    Article  CAS  Google Scholar 

  • Wagner V, Drews D, Esser N, Zahn DRT, Geurts J, Richter W (1994) Raman monitoring of semiconductor growth. J Appl Phys 75:7330–7333. doi:10.1063/1.356644

    Article  CAS  Google Scholar 

  • Wang H, Tam F, Grady NK, Halas NJ (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B Lett 109:18218–18222. doi:10.1021/jp053863t

    CAS  Google Scholar 

  • Zeman EJ, Carron KT, Schatz GC, Van Duyne RP (1987) A surface enhanced resonance Raman study of cobalt phthalocyanine on rough Ag films: Theory and experiment. J Chem Phys 87:4189–4200. doi:10.1063/1.452923

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank Prof. M. Albrecht and C. Brombacher for the support with nanosphere lithography, P. Matthes for Ag evaporation and T. Jagemann for SEM images. Thanks belong to the International Research Trainig Group of Advanced Materials, Interconnects and Nanostructures for financing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ludemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludemann, M., Brumboiu, I.E., Gordan, O.D. et al. Surface-enhanced Raman effect in ultra-thin CuPc films employing periodic silver nanostructures. J Nanopart Res 13, 5855–5861 (2011). https://doi.org/10.1007/s11051-011-0564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0564-z

Keywords

Navigation