Skip to main content
Log in

Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

To characterize the environmental transport and health risks of CeO2 nanoparticles (NPs), it is important to understand their aggregation behavior. This study investigates the aggregation kinetics of CeO2 NPs in KCl and CaCl2 solutions using time-resolved dynamic light scattering (TR-DLS). The initial hydrodynamic radius of CeO2 NPs measured by DLS was approximately 95 nm. Attachment efficiencies were derived both from aggregation data and predictions based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The deviations of the DLVO predictions were corrected by employing the extended DLVO (EDLVO) theory. The critical coagulation concentration (CCC) of CeO2 NPs at pH = 5.6 is approximately 34 mM for KCl and 9.5 mM for CaCl2. Furthermore, based on the EDLVO theory and the von Smoluchowski’s population balance equation, a model accounting for diffusion-limited aggregation (DLA) kinetics was established. For the reaction-limited aggregation (RLA) kinetics, a model that takes fractal geometry into account was established. The models fitted the experimental data well and proved to be useful for predicting the aggregation kinetics of CeO2 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguila G, Gracia F, Araya P (2008) CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature. Appl Catal A 343(1–2):16–24. doi:10.1016/j.apcata.2008.03.015

    CAS  Google Scholar 

  • Ball RC, Weitz DA, Witten TA, Leyvraz F (1987) Universal kinetics in reaction-limited aggregation. Phys Rev Lett 58(3):274–277

    Article  Google Scholar 

  • Barz DPJ, Vogel MJ, Steen PH (2009) Determination of the zeta potential of porous substrates by droplet deflection. I. The influence of ionic strength and pH value of an aqueous electrolyte in contact with a borosilicate surface. Langmuir 25(3):1842–1850. doi:10.1021/La802949z

    Article  CAS  Google Scholar 

  • Behrens SH, Christl DI, Emmerzael R, Schurtenberger P, Borkovec M (2000) Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory. Langmuir 16(6):2566–2575

    Article  CAS  Google Scholar 

  • Bekyarova E, Fornasiero P, Kaspar J, Graziani M (1998) CO oxidation on Pd/CeO2-ZrO2 catalysts. Catal Today 45(1–4):179–183

    Article  CAS  Google Scholar 

  • Berka M, Rice JA (2005) Relation between aggregation kinetics and the structure of kaolinite aggregates. Langmuir 21(4):1223–1229. doi:10.1021/La0478853

    Article  CAS  Google Scholar 

  • Buettner KM, Rinciog CI, Mylon SE (2010) Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloids Surf A 366(1–3):74–79. doi:10.1016/j.colsurfa.2010.05.024

    Article  CAS  Google Scholar 

  • Cevc G (1991) Hydration force and the interfacial structure of the polar surface. J Chem Soc Faraday Trans 87(17):2733–2739

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C-60) nanoparticles. Langmuir 22(26):10994–11001. doi:10.1021/La062072v

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interf Sci 309(1):126–134. doi:10.1016/j.jcis.2007.01.074

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2008) Interaction of fullerene (C-60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ Sci Technol 42(20):7607–7614. doi:10.1021/Es8012062

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C-60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43(19):7270–7276. doi:10.1021/Es900185p

    Article  CAS  Google Scholar 

  • Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40(5):1516–1523. doi:10.1021/Es0518068

    Article  CAS  Google Scholar 

  • Chen KL, Mylon SE, Elimelech M (2007) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23(11):5920–5928. doi:10.1021/La063744k

    Article  CAS  Google Scholar 

  • Derjaguin LDL BV, Landau LD (1941) Theory of stability of highly charged lyophobic sols and adhesion of highly charged particles in solutions of electrolytes. Acta Physicochim 14:633

    Google Scholar 

  • Elimelech M (1995) Particle deposition and aggregation: measurement, modelling, and simulation. Butterworth-Heinemann, Oxford, UK

  • Elimelech M, Omelia CR (1990) Kinetics of deposition of colloidal particles in porous-media. Environ Sci Technol 24(10):1528–1536

    Article  CAS  Google Scholar 

  • Espinasse B, Hotze EM, Wiesner MR (2007) Transport and retention of colloidal aggregates of C-60 in porous media: effects of organic macromolecules, ionic composition, and preparation method. Environ Sci Technol 41(21):7396–7402. doi:10.1021/Es0708767

    Article  CAS  Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43(5):1354–1359. doi:10.1021/Es802628n

    Article  CAS  Google Scholar 

  • Hoek EMV, Agarwal GK (2006) Extended DLVO interactions between spherical particles and rough surfaces. J Colloid Interf Sci 298(1):50–58. doi:10.1016/j.jcis.2005.12.031

    Article  CAS  Google Scholar 

  • Honig EP, Roeberse Gj, Wiersema PH (1971) Effect of hydrodynamic interaction on coagulation rate of hydrophobic colloids. J Colloid Interf Sci 36(1):97

    Article  CAS  Google Scholar 

  • Israelachvili J (1991) Intermolecular and surface forces, 2nd edn. Academic Press, London

    Google Scholar 

  • Jung HJ, Kittelson DB, Zachariah MR (2005) The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combust Flame 142(3):276–288. doi:10.1016/j.combustflame.2004.11.015

    Google Scholar 

  • Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley PA, Hansen TW, Zhang J, Ohara S, Adschiri T (2007) Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett 7(2):421–425. doi:10.1021/Nl062677b

    Article  CAS  Google Scholar 

  • Karimian H, Babaluo AA (2007) Halos mechanism in stabilizing of colloidal suspensions: nanoparticle weight fraction and pH effects. J Eur Ceram Soc 27(1):19–25. doi:10.1016/j.jeurceramsoc.2006.05.109

    Article  CAS  Google Scholar 

  • Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967. doi:10.1021/Es902987d

    Article  CAS  Google Scholar 

  • Kim T, Lee K, Gong MS, Joo SW (2005) Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir 21(21):9524–9528. doi:10.1021/La0504560

    Article  CAS  Google Scholar 

  • Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25(2):187–202. doi:10.1002/elps.200305754

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  Google Scholar 

  • Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21(13):5761–5769. doi:10.1021/La046829z

    Article  CAS  Google Scholar 

  • Kusters KA, Wijers JG, Thoenes D (1997) Aggregation kinetics of small particles in agitated vessels. Chem Eng Sci 52(1):107–121

    Article  CAS  Google Scholar 

  • Lee DS, Kim WS, Choi SH, Kim J, Lee HW, Lee JH (2005) Characterization of ZrO2 co-doped with SC2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ionics 176(1–2):33–39. doi:10.1016/j.ssi.2004.07.013

    Article  CAS  Google Scholar 

  • Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Universality in colloid aggregation. Nature 339(6223):360–362

    Article  CAS  Google Scholar 

  • Lin MY, Lindsay HM, Weitz DA, Klein R, Ball RC, Meakin P (1990) Universal diffusion-limited colloid aggregation. J Phys Condens Matter 2(13):3093–3113

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22. doi:10.1016/j.envpol.2007.06.006

    Article  CAS  Google Scholar 

  • Ohki S, Ohshima H (1999) Interaction and aggregation of lipid vesicles (DLVO theory versus modified DLVO theory). Colloids Surf B 14(1–4):27–45

    Article  CAS  Google Scholar 

  • Organization for Economic Co-operation and Development (2010) List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: revision. Series on the safety of manufactured nanomaterials no. 27. http://www.oecd.org/officialdocuments/displaydocumentpdf?cote=env/jm/mono%282010%2946&doclanguage=en. Accessed 22 Aug 2011

  • Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte-solutions—a correlation of double-layer and hydration forces with surface cation-exchange properties. J Colloid Interf Sci 83(2):531–546

    Article  CAS  Google Scholar 

  • Pashley RM, Israelachvili JN (1984) DLVO and hydration forces between mica surfaces in Mg-2+, Ca-2+, Sr-2+, and Ba-2+ chloride solutions. J Colloid Interf Sci 97(2):446–455

    Article  CAS  Google Scholar 

  • Rekveld S (1997) Ellipsometric studies of protein adsorption onto hard surfaces in a flow cell. Dissertation, Twente

  • Revil A, Pezard PA, Glover PWJ (1999) Streaming potential in porous media 1. Theory of the zeta potential. J Geophys Res 104(9):20021–20031

    Article  CAS  Google Scholar 

  • Runkana V, Somasundaran P, Kapur PC (2005) Reaction-limited aggregation in presence of short-range structural forces. AIChE J 51(4):1233–1245. doi:10.1002/Aic.10375

    Article  CAS  Google Scholar 

  • Saleh NB, Pfefferle LD, Elimelech M (2008) Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol 42(21):7963–7969. doi:10.1021/Es801251c

    Article  CAS  Google Scholar 

  • Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44(7):2412–2418. doi:10.1021/Es903059t

    Article  CAS  Google Scholar 

  • Sandkuhler P, Sefcik J, Lattuada M, Wu H, Morbidelli M (2003) Modeling structure effects on aggregation kinetics in colloidal dispersions. AIChE J 49(6):1542–1555

    Article  CAS  Google Scholar 

  • Santander-Ortega MJ, Lozano-Lopez MV, Bastos-Gonzalez D, Peula-Garcia JM, Ortega-Vinuesa JL (2010) Novel core-shell lipid-chitosan and lipid-poloxamer nanocapsules: stability by hydration forces. Colloid Polym Sci 288(2):159–172. doi:10.1007/s00396-009-2132-y

    Article  CAS  Google Scholar 

  • Schwarzer HC, Peukert W (2005) Prediction of aggregation kinetics based on surface properties of nanoparticles. Chem Eng Sci 60(1):11–25. doi:10.1016/j.ces.2004.06.050

    Article  CAS  Google Scholar 

  • Shiono M, Kobayashi K, Nguyen TL, Hosoda K, Kato T, Ota K, Dokiya M (2004) Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr)CoO3 cathode for low-temperature SOFCs. Solid State Ionics 170(1–2):1–7. doi:10.1016/j.ssi.2004.02.018

    Article  CAS  Google Scholar 

  • Smoluchowski V (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z Phys Chem 92:40

    Google Scholar 

  • Tsuruta LR, Lessa MM, Carmonaribeiro AM (1995) Effect of particle-size on colloid stability of bilayer-covered polystyrene microspheres. J Colloid Interf Sci 175(2):470–475

    Article  CAS  Google Scholar 

  • Van Hoecke K, Quik JTK, Mankiewicz-Boczek J, De Schamphelaere KAC, Elsaesser A, Van der Meeren P, Barnes C, McKerr G, Howard CV, Van De Meent D, Rydzynski K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, De Samber B, Vincze L, Janssen CR (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43(12):4537–4546. doi:10.1021/Es9002444

    Article  Google Scholar 

  • van Oss CJ (1993) Acid-base interfacial interactions in aqueous-media. Colloids Surf A 78:1–49

    Article  Google Scholar 

  • van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16(4):177–190. doi:10.1002/Jmr.618

    Article  Google Scholar 

  • van Oss CJ (2006) Interfacial forces in aqueous media, 2nd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  • van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-Vanderwaals and polar interactions in macroscopic systems. Chem Rev 88(6):927–941

    Article  Google Scholar 

  • van Oss CJ, Giese RF, Costanzo PM (1990) DLVO and non-DLVO interactions in hectorite. Clays Clay Miner 38(2):151–159

    Article  Google Scholar 

  • Verwey EJW, Overbeek JTG, Kv Nes (1948) Theory of the stability of lyophobic colloids; the interaction of sol particles having an electric double layer. Elsevier Pub. Co., New York

    Google Scholar 

  • Wang YG, Li YS, Fortner JD, Hughes JB, Abriola LM, Pennell KD (2008) Transport and retention of nanoscale C-60 aggregates in water-saturated porous media. Environ Sci Technol 42(10):3588–3594. doi:10.1021/Es800128m

    Article  CAS  Google Scholar 

  • Weitz DA, Huang JS, Lin MY, Sung J (1985) Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids. Phys Rev Lett 54(13):1416–1419

    Article  CAS  Google Scholar 

  • Zhang Y, Chen YS, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42(8–9):2204–2212. doi:10.1016/j.watres.2007.11.036

    Article  CAS  Google Scholar 

  • Zhang Y, Chen YS, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249–4257. doi:10.1016/j.watres.2009.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the US Environmental Protection Agency Science to Achieve Results Program grant RD-83385601 and Semiconductor Research Corporation (SRC)/ESH grant (425.025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3.26 Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K., Zhang, W., Huang, Y. et al. Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. J Nanopart Res 13, 6483–6491 (2011). https://doi.org/10.1007/s11051-011-0548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0548-z

Keywords

Navigation