Skip to main content
Log in

Facile synthesis of nanosized ε-Fe2O3 particles on the silica support

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An approach is suggested to synthesize the ε-Fe2O3 particles supported on silica with the mean size of few nanometers, narrow size distribution and no admixture of any other iron oxide polymorphs. The facile synthesis is based on the pore filling impregnation method by iron sulfate (II) water solution with the following annealing procedure at ~1173 K. It is shown that the ε-Fe2O3 nanoparticles obtained are stable up to ~1173 K and possess superparamagnetic behavior up to ~870 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arena F, Gatti G, Stievano L, Martra G, Coluccia S, Frusteri F, Spadaro L, Parmaliana L (2006) Activity pattern of low-loaded FeOx/SiO2 catalysts in the selective oxidation of C1 and C3 alkanes with oxygen. Catal Today 117:75–79

    Article  CAS  Google Scholar 

  • Bachari K, Millet JMM, Bonville P, Cherifia O, Figueras F (2007) Spectroscopic characterization of iron nanoparticles in Fe-mesoporous silicate catalysts. J Catal 249:52–58

    Article  CAS  Google Scholar 

  • Barick KC, Varaprasad BS, Bahadur D (2010) Structural and magnetic properties of γ- and ε-Fe2O3 nanoparticles dispersed in silica matrix. J Non-Cryst Solids 356:153

    Article  CAS  Google Scholar 

  • Bukhtiyarova GA, Mart’yanov ON, Yakushkin SS, Shuvaeva MA, Bayukov OA (2010) State of iron in nanoparticles prepared by impregnation of silica gel and aluminum oxide with FeSO4 solutions. Phys Solid State 52:826–837

    Article  CAS  Google Scholar 

  • ChanCac C, Tronc E, Jolivet JP (1996) Magnetic iron oxide-silica nanocomposites. Synthesis and characterization. J Mater Chem 6:1905–1911

    Article  Google Scholar 

  • Ding Y, Morber JR, Snyder RL, Wang ZL (2007) Nanowire structural evolution from Fe3O4 to ε-Fe2O3. Adv Funct Mater 17:1172–1178

    Article  CAS  Google Scholar 

  • Dormann JL, Viart N, Rehspringer JL, Ezzir A, Niznansky D (1998) Magnetic properties of Fe2O3 particles prepared by sol-gel method. Hyperfine Interact 112:89–92

    Article  CAS  Google Scholar 

  • Fazeau G, Shilov V, Bacri JC, Dubois E, Gendron F, Perzynski R, Raikher YuL, Stepanov VI (1999) Magnetic resonance of nanoparticles in a ferrofluid: evidence of thermofluctuational effects. J Magn Magn Mater 202:535

    Article  Google Scholar 

  • Fujita M, Costas M, Que L Jr (2003) Iron-catalyzed olefin cis-dihydroxylation by H2O2: electrophilic versus nucleophilic mechanisms. J Am Chem Soc 125:9912–9913

    Article  CAS  Google Scholar 

  • Gelalcha FG, Bitterlich B, Anilkumar G, Tse M-K, Beller M (2007) Iron-catalyzed asymmetric epoxidation of aromatic alkenes using hydrogen peroxide. Angew Chem Int Ed 46:7293–7296

    Article  CAS  Google Scholar 

  • Gich M, Roig A, Taboada E, Molins E, Bonafosb C, Snoeck E (2007) Stabilization of metastable phases in spatially restricted fields: the case of the Fe2O3 polymorphs. Faraday Discuss 136:345–354

    Article  CAS  Google Scholar 

  • Gondal MA, Hameed A, Yamani ZH, Suwaiyan A (2004) Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3. Appl Catal A 268:159–167

    Article  CAS  Google Scholar 

  • Jin J, Ohkoshi S, Hashimoto K (2004) Giant Coercive field of nanometer-sized iron oxide. Adv Mater 16:48–51

    Article  CAS  Google Scholar 

  • Kawabata T, Ohishi Y, Itsuki S, Fujisaki N, Shishido T, Takaki K, Zhang Q, Wang Y, Takehira K (2005) Iron-containing MCM-41 catalysts for Baeyer-Villiger oxidation of ketones using molecular oxygen and benzaldehyde. J Mol Catal A 236:99–106

    Article  CAS  Google Scholar 

  • Kim DJ, Dunn BC, Huggins F, Huffman GP, Kang M, Yie JE, Eyring EM (2006) SBA-15-supported iron catalysts for Fischer-Tropsch production of diesel fuel. Energy Fuels 20:2608–2611

    Article  CAS  Google Scholar 

  • Legros J, Bolm C (2003) Iron-catalyzed asymmetric sulfide oxidation with aqueous hydrogen peroxide. Angew Chem Int Ed 42:5487–5489

    Article  CAS  Google Scholar 

  • Legros J, Bolm C (2005) Investigations on the iron-catalyzed asymmetric sulfide oxidation. Chem Eur J 11:1086–1092

    Article  CAS  Google Scholar 

  • Liu T, You H, Chen Q (2009) Heterogeneous photo-Fenton degradation of polyacrylamide in aqueous solution over Fe(III)-SiO2 catalyst. J Hazard Mater 162:860–865

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Maeda M, Kuroda CS, Shimura T, Tada M, Abe M, Yamamuro S, Sumiyama K, Handa H (2006) Magnetic carriers of iron nanoparticles coated with a functional polymer for high throughput bioscreening. J Appl Phys 99:08H103–08H106. doi:10.1063/1.2165127

    Article  Google Scholar 

  • Martin SE, Garrone A (2003) Efficient solvent-free iron (III) catalyzed oxidation of alcohols by hydrogen peroxide. Tetrahedron Lett 44:549–552

    Article  CAS  Google Scholar 

  • Martinez F, Calleja G, Melero JA, Molina R (2007) Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol. Appl Catal B 70:452–460

    Article  CAS  Google Scholar 

  • Nakamura T, Yamada Y, Yano K (2006) Novel synthesis of highly monodispersed γ-Fe2O3/SiO2 and ε-Fe2O3/SiO2 nanocomposite spheres. J Mater Chem 16:2417–2419

    Article  CAS  Google Scholar 

  • Nakanishi M, Bolm C (2007) Iron-catalyzed benzylic oxidation with aqueous tert-butyl hydroperoxide. Adv Synth Catal 349:861–864

    Article  CAS  Google Scholar 

  • Oldenburg PD, Shteinman AA, LJr Que (2005) Iron-catalyzed olefin cis-dihydroxylation using a bio-inspired N,N,O-ligand. J Am Chem Soc 127:15672–15673

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181

    Article  CAS  Google Scholar 

  • Pelovski Y, Petkova V, Nikolov S (1996) Study of the mechanism of the thermochemical decomposition of ferrous sulphate monohydrate. Thermochim Acta 274:273–280

    Article  CAS  Google Scholar 

  • Petkova V, Pelovski Y (2001) Investigation on the thermal properties of Fe2O(SO4)2–Part II. J Therm Anal Calorim 64:1037–1044

    Article  CAS  Google Scholar 

  • Popovici M, Gich M, Niznansky D, Roig A, Savii C, Casas L, Molins E, Zaveta K, Enache C, Sort J, de Brion S, Chouteau G, Nogue′s J (2004) Optimized synthesis of the elusive ε-Fe2O3 phase via sol-gel chemistry. J Chem Mater 16:5542–5548

    Article  CAS  Google Scholar 

  • Reichert D, Bockhorn H, Kureti S (2008) Study of the reaction of NOx and soot on Fe2O3 catalyst in excess of O2. Appl Catal B 80:248–259

    Article  CAS  Google Scholar 

  • Sacurai S, Namai A, Hashimoto K, Ohkoshi S (2009) First observation of phase transformation of all four Fe2O3 Phases (γ- > ε- > β- > α-phase). J Am Chem Soc 131:18299–18303

    Article  Google Scholar 

  • Silberova BAA, Mul G, Makkee M, Moulijn JA (2006) DRIFTS study of the water-gas shift reaction over Au/Fe2O3. J Catal 243:171–182

    Article  Google Scholar 

  • Tadic M, Spasojevic V, Kusigerski V, Markovic D, Remskar M (2008) Formation of ε-Fe2O3 phase by the heat treatment of α-Fe2O3/SiO2 nanocomposite. Scripta Mater 58:703–706

    Article  CAS  Google Scholar 

  • Tronc E, Chaneac C, Jolivet JP (1998) Structural and magnetic characterization of ε-Fe2O3. J Sol Stat Chem 139:93–104

    Article  CAS  Google Scholar 

  • Zboril R, Mashlan M, Barcova K, Vujtek M (2002) Thermally induced solid-state syntheses of γ-Fe2O3 nanoparticles and their transformation to α-Fe2O3 via ε-Fe2O3. Hyperfine Interact 139–140:597–606

    Article  Google Scholar 

  • Zboril R, Mashlan M, Papaefthymiou V, Hadjipanayis G (2003) Thermal decomposition of Fe2(SO4)3: demonstration of Fe2O3 polymorphism. J Radioanal Nucl Chem 255:413–417

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by Presidium of RAS through the program “Basic researches of nanomaterials and nanotechnologies”, project 27.46.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Martyanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukhtiyarova, G.A., Shuvaeva, M.A., Bayukov, O.A. et al. Facile synthesis of nanosized ε-Fe2O3 particles on the silica support. J Nanopart Res 13, 5527–5534 (2011). https://doi.org/10.1007/s11051-011-0542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0542-5

Keywords

Navigation