Skip to main content

Advertisement

Log in

Entry of large nanoparticles into cells aided by nanoscale mechanical stimulation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2012

Abstract

Nanoparticle entry into the cell depends on the surface charge and also on their size. Here, we report the entry of large magnetic nanoparticles (500 nm mean diameter) into the cell, being mediated by a mechanical stimulus supplied to the culture flasks. Investigations were carried out at 2–10 Hz frequency range with the vertical excursions ranging from 5 to 20 nm. Mechanical stimulation was found to aid the entry of both positive and negatively charged nanoparticles over a frequency range of 2–10 Hz. Transmission electron microscopy analysis indicated that, the stimulated samples could possibly mediate particle uptake through membrane invaginations, while the control samples indicated particles at the cell periphery, just outside the cell membrane. Mechanical stimulation had no significant effect on the cell morphology. Bromodeoxyuridine incorporation resulted in an increase in the proportion of S-phase in the stimulated samples compared with the controls, suggesting a reduction in the cell cycle duration. Mechanical stimulation could very well extend its effects to nanoscale cellular movements, and also facilitate the entry of large magnetic nanoparticle. This could be an interesting prospect for nanoparticle mediated drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berry CC, Charles S, Wells S, Dalby MJ, Curtis ASG (2004) The influence of transferrin stabilised magnetic nanoaprticles on human dermal fibroblasts in culture. Int J Pharm 269:211–225. doi:10.1016/j.ijpharm.2003.09.042

    Article  CAS  Google Scholar 

  • Boccafoschi F, Bosetti M, Sandra PM, Leigheb M, Cannas M (2010) Effects of mechanical stress on cell adhesion: a possible mechanism for morphological changes. Cell Adh Migr 4(1):19–25. doi:10.4161/cam.4.1.9569

    Article  CAS  Google Scholar 

  • Brown TD (1995) Techniques for cell and tissue culture mechanostimulation: historical and contemporary design considerations. Iowa Orthop J 15:112–117

    CAS  Google Scholar 

  • Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33:3–14. doi:10.1016/S0021-9290(99)00177-3

    Article  CAS  Google Scholar 

  • Curtis ASG, Seehar GM (1978) The control of cell division by tension or diffusion. Nature 274:52–53. doi:10.1038/274052a0

    Article  CAS  Google Scholar 

  • Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6(5):1417–1428. doi:10.1021/mp900083m

    Article  Google Scholar 

  • Harush-Frenkel O, Debotton N, Benita S, Altschuler Y (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26–32. doi:10.1016/j.bbrc.2006.11.135

    Article  CAS  Google Scholar 

  • Hughes S, Dobson J, Haj AE (2003) Mechanical stimulation of calcium signaling pathways in human bone cells using ferromagnetic micro-particles: implications for tissue engineering. Eur Cells Mater 6(2):43

    Google Scholar 

  • Kim M, Javed NH, Yu JG, Christofi F, Cooke HJ (2001) Mechanical stimulation activates Galphaq signaling pathways and 5-hydroxytryptamine release from human carcinoid BON cells. J Clin Invest 108(7):1051–1059. doi:10.1172/JCI12467

    CAS  Google Scholar 

  • Lange E, Koenig FO (1993) Handbuch der experimentalphysik. Leipzig, 263 pp

  • Li Y, Chen X, Gu N (2008) Computational Investigation of Interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B 112:16647–16653. doi:10.1021/jp8051906

    Article  CAS  Google Scholar 

  • Marchal G, Van Hecke P, Demaerel P, Decrop E, Kennis C, Baert AL, van der Schueren E (1989) Detection of liver metastases with superparamagnetic iron oxide in 15 patients: results of MR imaging at 1.5 T. Am J Roentgen 152:771–775. doi:0361-803X/AJR89/1524-07710

    CAS  Google Scholar 

  • Overbeek JTHD (1952) Electrochemistry of the double layer, Chap 6, vol 1. In: Kruyt HR (ed) Colloid science. Elsevier, Amsterdam, pp 124–126

  • Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H (2005) Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26:2685–2694. doi:10.1016/j.biomaterials.2004.07.023

    Article  CAS  Google Scholar 

  • Pioletti DP, Muller J, Rakotomanana LR, Corbeil J, Wild E (2003) Effect of micromechanical stimulations on osteoblasts: development of a device simulating the mechanical situation at the bone-implant interface. J Biomech 36(1):131–135. doi:10.1016/S0021-9290(02)00301-9

    Article  Google Scholar 

  • Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8(24):1112–1120. doi:10.1016/S1359-6446(03)02903-9

    Article  CAS  Google Scholar 

  • Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomed Nanotechnol Biol Med 3:20–31. doi:10.1016/j.nano.2006.11.008

    Article  CAS  Google Scholar 

  • Smith CA, de la Fuente J, Pelaz B, Furlani EP, Mullin M, Berry CC (2010) The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials 31:4392–4400. doi:10.1016/j.biomaterials.2010.01.096

    Article  CAS  Google Scholar 

  • Tripathi SC, Kerr J (1989) Effect of mechanical stress on cellular morphology. Tissue Cell 21(5):747–752. doi:10.1016/0040-8166(89)90083-9

    Article  CAS  Google Scholar 

  • Villanueva A, Canete M, Roca AG, Calero M, Veintamillas-Verdaguer S, Serna CJ, et.al. (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103. doi: 10.1088/0957-4484/20/11/115103

    Google Scholar 

  • Zentner A, Wieschollek JH, Heaney TG (2001) Effects of mechanical stimulation on cell cycle duration in rat gingival fibroblast progenitor cells. Eur J Oral Sci 109(4):267–272. doi:10.1034/j.1600-0722.2001.00062.x

    Article  CAS  Google Scholar 

  • Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110:138–155. doi:10.1093/toxsci/kfp087

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Carol-Anne Smith and Andrew Hart for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Curtis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaidyanathan, R., Curtis, A. & Mullin, M. Entry of large nanoparticles into cells aided by nanoscale mechanical stimulation. J Nanopart Res 13, 5301–5309 (2011). https://doi.org/10.1007/s11051-011-0516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0516-7

Keywords

Navigation