Skip to main content
Log in

The bench scientist’s perspective on the unique considerations in nanoparticle regulation

  • Special Focus: Governance of nanobiotechnology
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The emergence and use of nanotechnologies in commercially available products, including nanotherapeutics, have necessitated the response of regulatory agencies to ensure that these products are safely employed. While bench scientists are at the forefront of nanoparticle development and design, many are unaware of the regulatory requirements necessary to transform their laboratory discoveries into marketable products. As bench scientists, we performed a “thought experiment” using multifunctional mesoporous silica nanoparticles synthesized in our lab, which we considered as a combination product, to try to understand the steps necessary for pre-clinical approval from the Food and Drug Administration. This thought experiment illuminated challenges associated with nanoparticle risk assessment and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brendel E (2004) Intuition pumps and the proper use of thought experiments. Dialectica 58(1):89–108. doi:10.1111/j.1746-8361.2004.tb00293.x

    Article  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA: 2050–2055. doi:10.1073/pnas.0608582104

  • Dong L, Xia S, Wu K, Huang Z, Chen H, Chen J, Zhang J (2010) A ph/enzyme-responsive tumor-specific delivery system for doxorubicin. Biomaterials 31:6309–6316. doi:10.1016/j.biomaterials.2010.04.049

    Article  CAS  Google Scholar 

  • George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Mädler L, Nel AE (2009) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4:15–29

    Article  Google Scholar 

  • Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips A (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49:217–229. doi:10.1016/j.yrtph.2007.07.006

    Article  CAS  Google Scholar 

  • He XX, Nie HL, Wang KM, Tan WH, Wu X, Zhang PF (2008) In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 80:9597–9603. doi:10.1021/ac801882g

    Article  CAS  Google Scholar 

  • Hill HM (2002) Regulatory aspects of bioanalysis in preclinical and clinical studies. Chromatographia 55:S83–S84. doi:Unsp0009-5893/00/02

    Article  CAS  Google Scholar 

  • Inoue K, Takano H (2010) Adjuvanticity of nanoparticles on Th immunity. Basic Clin Pharmacol Toxicol 106:445. doi:10.1111/j.1742-7843.2010.00584.x

    Article  CAS  Google Scholar 

  • Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdorster G (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21:55–60. doi:10.1080/08958370902942517

    Article  CAS  Google Scholar 

  • Larsen ST, Roursgaard M, Jensen KA, Nielsen GD (2010) Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 106:114–117. doi:10.1111/j.1742-7843.2009.00473.x

    Article  CAS  Google Scholar 

  • Lin YS, Haynes CL (2009) Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chem Mater 21:3979–3986. doi:10.1021/cm901259n

    Article  CAS  Google Scholar 

  • Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842. doi:10.1021/ja910846q

    Article  CAS  Google Scholar 

  • Lindquist E, Mosher-Howe K, Liu X (2010) Nanotechnology. What is it good for? (absolutely everything): a problem definition approach. Rev Policy Res 27:255–271. doi:10.1111/j.1541-1338.2010.00441.x

    Article  Google Scholar 

  • Liu XY, Hurt RH, Kane AB (2010) Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon 48:1961–1969. doi:10.1016/j.carbon.2010.02.002

    Article  CAS  Google Scholar 

  • Love SA, Haynes CL (2010) Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions. Anal Bioanal Chem 398:677–688

    Article  CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA: 14265–14270. doi:10.1073/pnas.0805135105

  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–35:167–174. doi:10.1016/j.cis.2007.04.021

    Article  Google Scholar 

  • Marquis BJ, McFarland AD, Braun KL, Haynes CL (2008) Dynamic measurement of altered chemical messenger secretion after cellular uptake of nanoparticles using carbon-fiber microelectrode amperometry. Anal Chem 80:3431–3437. doi:10.1021/ac800006y

    Article  CAS  Google Scholar 

  • Marquis BJ, Love SA, Braun KL, Haynes CL (2009a) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    Article  CAS  Google Scholar 

  • Marquis BJ, Maurer-Jones MA, Braun KL, Haynes CL (2009b) Amperometric assessment of functional changes in nanoparticle-exposed immune cells: varying Au nanoparticle exposure time and concentration. Analyst 134:2293–2300. doi:10.1039/b913967b

    Article  CAS  Google Scholar 

  • Maurer-Jones MA, Bantz KC, Love SA, Marquis BJ, Haynes CL (2009) Toxicity of therapeutic nanoparticles. Nanomedicine 4:219–241

    Article  CAS  Google Scholar 

  • Maurer-Jones MA, Lin YS, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4:3363–3373. doi:10.1021/nn9018834

    Article  CAS  Google Scholar 

  • Maynard A (2009) Ten things everyone should know about nanoparticle safety. http://2020science.org/2009/08/29/10things/. Accessed July 2010

  • Norton JD (1996) Are thought experiments just what you thought? Can J Philos 26:333–366

    Google Scholar 

  • O’Hagan DT, MacKichan ML, Singh M (2001) Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng 18:69–85. doi:10.1016/S1389-0344(01)00101-0

    Article  Google Scholar 

  • Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. J Intern Med 267:89–105. doi:10.1111/j.1365-2796.2009.02187.x

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi:10.1289/ehp.7339

    Article  CAS  Google Scholar 

  • Pangburn TO, Petersen MA, Waybrant B, Adil MM, Kokkoli E (2009) Peptide- and aptamer-functionalized nanovectors for targeted delivery of therapeutics. J Biomech Eng 131:074005. doi:10.1115/1.3160763

    Article  Google Scholar 

  • Seymour LW (2006) The future of gene therapy in the UK. Trends Biotechnol 24:347–349. doi:10.1016/j.tibtech.2006.06.002

    Article  CAS  Google Scholar 

  • Staroverov SA, Aksinenko NM, Gabalov KP, Vasilenko OA, Vidyasheva IV, Shchyogolev SY, Dykman LA (2009) Effect of gold nanoparticles on the respiratory activity of peritoneal macrophages. Gold Bull 42:153–156

    Article  CAS  Google Scholar 

  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312

    Article  CAS  Google Scholar 

  • U.S. Congress (2006) Hearing of the senate committee on commerce, science and transportation, “Promoting economic development through nano commercialization.” Text from the Woodrow Wilson international center for scholar’s project on emerging nanotechnologies. http://www.nanotechproject.org/publications/. Accessed July 2010

  • van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM (2008) Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol Pharm 5:516–526. doi:10.1021/mp800030k

    Article  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. doi:10.1002/smll.200901158

    Article  CAS  Google Scholar 

  • von Escherbach AC (2007) Nanotechnology: a report of the U.S. Food and Drug Administration nanotechnology task force. U.S. Food and Drug Administration, Rockville

    Google Scholar 

  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104. doi:10.1016/j.tox.2006.11.002

    Article  CAS  Google Scholar 

  • Zamboni WC (2005) Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin Cancer Res 11:8230–8234. doi:10.1158/1078-0432.ccr-05-1895

    Article  CAS  Google Scholar 

  • Zamboni WC (2008) Concept and clinical evaluation of carrier-mediated anticancer agents. Oncologist 13:248–260. doi:10.1634/theoncologist.2007-0180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Preparation of this article was supported by National Science Foundation (NSF) grant #0608791, “NIRT: Evaluating Oversight Models for Active Nanostructures and Nanosystems: Learning from Past Technologies in a Societal Context” (Principle Investigator: S.M. Wolf; Co-PIs: E. Kokkoli, J. Kuzma, J. Paradise, and G. Ramachandran). This study was financially supported by NSF grant # CHE-0645041, an NSF Graduate Research Fellowship awarded to M.A.M.-J., and a Taiwan Merit Scholarship (NSC-095-SAF-I-564-052-TMS) awarded to Y.-S.L. The views expressed are those of the authors and do not necessarily reflect the views of NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy L. Haynes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquis, B.J., Maurer-Jones, M.A., Ersin, Ö.H. et al. The bench scientist’s perspective on the unique considerations in nanoparticle regulation. J Nanopart Res 13, 1389–1400 (2011). https://doi.org/10.1007/s11051-011-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0251-0

Keywords

Navigation