Skip to main content
Log in

Facile synthesis of titania/hyperbranched polyglycidol nanohybrids with controllable morphologies: from solid spheres, capsules to tubes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Titania/Hyperbranched polyglycidol (HBP) nanohybrids with tunable morphologies have been synthesized via a sol–gel process at ambient temperature. One-shot addition of varied amounts of titanium precursor tetraisopropoxide (TTIP) yields spherical titania/HBP solid particles with tunable size, while a controlled addition of TTIP results in spherical titania/HBP capsules. The average outer and inner diameters of the resultant capsules are also controllable according to the amount of TTIP via an Oswald ripening process. In addition, the modality of additional water supplied in the reaction systems can tune the morphologies of the resulting titania/HBP particles from nanocapsules to nanotubes owing to the accelerated hydrolysis rate of TTIP. The tunability in morphologies of the titania/HBP nanostructures ranging from solid spheres, capsules to tubes could be attributed to the self-assembly of a large amount of titania/HBP aggregates in a rapid, controlled and anisotropic manner, respectively. Surprisingly, by means of HBP contained in the resulting titania/HBP nanostructures, the gold nanoparticles are in situ generated and encapsulated into titania/HBP matrix in the absence of additional reducing agent. The as-prepared gold nanoparticles functionalized titania/HBP hybrids exhibit excellent catalytic function toward the reduction of 4-nitrophenol. This strategy demonstrates a typical example for functionalizing the titania/HBP hybrids targeted to specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Buonsanti R, Grillo V, Carlino E, Giannini C, Curri ML, Innocenti C, Sangregorio C, Achterhold K, Parak FG, Agostiano A, Cozzoli PD (2006) Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic γ-Fe2O3 spherical domain. J Am Chem Soc 128:16953–16970

    Article  CAS  Google Scholar 

  • Cao X, Gu L, Zhuge L, Gao W, Wang W, Wu S (2006) Template-free preparation of hollow Sb2S3 microspheres as supports for Ag nanoparticles and photocatalytic properties of the constructed metal-semiconductor nanostructures. Adv Funct Mater 16:896–902

    Article  CAS  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  • Chen J, Qin G, Reveendran P, Ikushima Y (2006) Facile “green” synthesis, characterization, and catalytic function of β-d-glucose-stabilized Au nanocrystals. Chem Eur J 12:2131–2138

    Article  Google Scholar 

  • Cheng Y-J, Gutmann JS (2006) Morphology phase diagram of ultrathin anatase TiO2 films templated by a single PS-b-PEO block copolymer. J Am Chem Soc 128:4658–4674

    Article  CAS  Google Scholar 

  • Cheng Y-J, Müller-Buschbaum P, Gutmann JS (2007) Ultrathin anatase TiO2 films with stable vesicle morphology templated by PMMA-b-PEO. Small 3:1379–1382

    Article  CAS  Google Scholar 

  • Cozzoli PD, Kornowski, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548

    Article  CAS  Google Scholar 

  • Esumi K, Isono R, Yoshimura T (2004) Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243

    Article  CAS  Google Scholar 

  • Fievet F, Lagier JP, Figlarz M (1989) Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull 14:29–34

    CAS  Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  • Haag R, Stumb J-F, Sunder A, Frey H, Hebel A (2000) An approach to core–shell-type architectures in hyperbranched polyglycerols by selective chemical differentiation. Macromolecules 33:8158–8166

    Article  CAS  Google Scholar 

  • Hu Y, Ge J, Sun Y, Zhang T, Yin Y (2007) A self-templated approach to TiO2 microcapsules. Nano Lett 7:1832–1836

    Article  CAS  Google Scholar 

  • Huang J, Kunitake T (2006) Nanotubings of titania/polymer composite: template synthesis and nanoparticle inclusion. J Mater Chem 16:4257–4264

    Article  CAS  Google Scholar 

  • Jiang X, Herricks T, Xia Y (2003) Monodispersed spherical colloids titania: synthesis, characterization and crystallization. Adv Mater 15:1205–1209

    Article  CAS  Google Scholar 

  • Kainthan RK, Janzen J, Levin E, Devine DV, Brooks DE (2006) Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7:703–709

    Article  CAS  Google Scholar 

  • Kainthan RK, Hester SR, Levin E, Devine DV, Brooks DE (2007) In vitro biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28:4581–4590

    Article  CAS  Google Scholar 

  • Khan M, Huck WTS (2003) Hyperbranched polyglycidol on Si/SiO2 surfaces via surface-initiated polymerization. Macromolecules 36:5088–5093

    Article  CAS  Google Scholar 

  • Kim CW, Cha HG, Kim YH, Jadhav AP, Ji ES, Kang DI, Kang YS (2009) Surface investigation and magnetic behavior of Co nanoparticles prepared via a surfactant-mediated polyol process. J Phys Chem C 113:5081–5086

    Article  CAS  Google Scholar 

  • Komarneni S, Li D, Newalkar B, Katsuki H, Bhalla AS (2002) Microwave–polyol process for Pt and Ag nanoparticles. Langmuir 18:5959–5962

    Article  CAS  Google Scholar 

  • Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells: tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J Am Chem Soc 130:4007–4015

    Article  CAS  Google Scholar 

  • Krämer M, Pérignon N, Haag R, Marty J-D, Thomann R, Viguerie NL, Mingotaud C (2005) Water-soluble dendritic architectures with carbohydrate shells for the templation and stabilization of catalytically active metal nanoparticles. Macromolecules 38:8308–8315

    Article  Google Scholar 

  • Kurihara LK, Chow GM, Schoen PE (1995) Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater 5:607–613

    Article  CAS  Google Scholar 

  • Léaustic A, Bahonneau F, Livage J (1989) Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 2. From the modified precursor to the colloids. Chem Mater 1:248–252

    Article  Google Scholar 

  • Li J, Zeng HC (2007) Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. J Am Chem Soc 129:15839–15847

    Article  CAS  Google Scholar 

  • Murakami Y, Matsumoto T, Takasu Y (1999) Salt catalysts containing basic anions and acidic cations for the sol–gel process of titanium alkoxide: controlling the kinetics and dimensionality of the resultant titanium oxide. J Phys Chem B 103:1836–1840

    Article  CAS  Google Scholar 

  • Qiu J, Yu W, Gao X, Li X (2007) Sol–gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays. Nanotechnology 18: 295604 (5 pp)

    Google Scholar 

  • Roberson LB, Poggi MA, Kowalik J, Smestad GP, Bottomley LA, Tolbert LM (2004) Correlation of morphology and device performance in inorganic–organic TiO2–polythiophene hybrid solid-state solar cells. Coord Chem Rev 248:1491–1499

    Article  CAS  Google Scholar 

  • Sewell SL, Rutledge RD, Wright DW (2008) Versatile biomimetic dendrimer templates used in the formation of TiO2 and GeO2. Dalton Trans 3857–3865

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142

    Article  CAS  Google Scholar 

  • Shen Y, Kuang M, Shen Z, Nieberle J, Duan H, Frey H (2008) Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: towards smart temperature and pH nanosensors. Angew Chem Int Ed 47:2227–2230

    Article  CAS  Google Scholar 

  • Song L, Lam YM, Boothroyd C, Teo PW (2007) One-step synthesis of titania nanoparticles from PS-P4VP diblock copolymer solution. Nanotechnology 18: 135605 (6 pp)

    Google Scholar 

  • Stiriba S-E, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed 41:1329–1334

    Article  CAS  Google Scholar 

  • Sugimoto T, Zhou X, Muramatsu A (2003) Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control. J Colloid Interface Sci 259:53–61

    Article  CAS  Google Scholar 

  • Sunder A, Hanselmann R, Frey H, Mülhaupt R (1999) Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32:4240–4246

    Article  CAS  Google Scholar 

  • Wang Z-S, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389

    Article  CAS  Google Scholar 

  • Wei M, Konishi Y, Zhou H, Sugihara H, Arakawa H (2004) A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chem Phys Lett 400:231–234

    Article  CAS  Google Scholar 

  • Yin Y, Rious RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 304:711–714

    Article  CAS  Google Scholar 

  • Yin M, Cheng Y, Liu M, Gutmann JS, Müllen K (2008) Nanostructured TiO2 films templated by amphiphilic dendritic core–double–shell macromolecules: from isolated nanorings to continuous 2D mesoporous networks. Angew Chem Int Ed 47:8400–8403

    Article  CAS  Google Scholar 

  • Yu HK, Yi G-R, Kang J-H, Cho Y-S, Manoharan VN, Pine DJ, Yang S-M (2008) Surfactant-assisted synthesis of uniform titania microspheres and their clusters. Chem Mater 20:2704–2710

    Article  CAS  Google Scholar 

  • Zhang Y, Peng H, Huang W, Zhou Y, Zhang X, Yan D (2008) Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J Phys Chem C 112:2330–2336

    Article  CAS  Google Scholar 

  • Zhou Y, Yan D (2009) Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives. Chem Commun 1172–1188

Download references

Acknowledgments

This study was supported by grants-in-aid for the World Class University Program (No. R32-2008-000-10174-0) and the National Core Research Center Program from MEST (No. R15-2006-022-01001-0), and the Brain Korea 21 program (BK-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, L., Jo, J.K. et al. Facile synthesis of titania/hyperbranched polyglycidol nanohybrids with controllable morphologies: from solid spheres, capsules to tubes. J Nanopart Res 13, 2117–2128 (2011). https://doi.org/10.1007/s11051-010-9969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9969-3

Keywords

Navigation