Skip to main content
Log in

Improving the electrical catalytic activity of Pt/TiO2 nanocomposites by a combination of electrospinning and microwave irradiation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

One of the greatest challenges in preparing TiO2-based oxygen electrodes for PEM fuel cells is increasing the electrical catalytic activity of Pt nanoparticle/TiO2 composites by improving the dispersion of Pt. This article describes a new way for improving the dispersion of Pt nanoparticles by depositing them on TiO2 fibers and using microwave irradiation. The Pt nanoparticles used in this experiment is about 5 nm in diameter and the diameter of TiO2 fibers could be controlled ranging from 30 to 60 nm and Pt nanoparticles still keep their size when the deposition amount is increased on the surface of TiO2 fibers. The Pt nanoparticles were highly dispersed without agglomeration even at a weight percentage of composites as high as 40%. The position of Pt nanoparticles located in the fiber and the composition of Pt/TiO2, which had great influence on the electric conductivity and electrical catalytic activity of the composite, could be easily controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bernard C, Planeix JM, Valerie B (1998) Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl Catal A 173:175–183

    Article  Google Scholar 

  • Endo M, Kim YA et al (2003) Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Lett 3:723–726

    Article  CAS  Google Scholar 

  • Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed 41(7):1221–1223

    Article  CAS  Google Scholar 

  • Formo E, Lee E, Campbell D, Xia Y (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8:668–672

    Article  CAS  Google Scholar 

  • Johannes S, Roel VK, Ten Hoopen S (2007) Nanosized catalysts for the anode of a PEM fuel cell EP 1808 920 A1

  • Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560

    Article  CAS  Google Scholar 

  • Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  • Li D, McCann J, Gratt M, Xia Y (2004) Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania. Chem Phys Lett 394:387–391

    Article  CAS  Google Scholar 

  • Lim J, Yu B, Woo KM, Lee YK (2008) Immobilization of TiO2 nanofibers on titanium plates for implant applications. Appl Surf Sci 255:2456–2460

    Article  CAS  Google Scholar 

  • Lin CH, Chao JH, Liu CH, Chang JC, Wang FC (2008) Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2. Langmuir 24:9907–9915

    Article  CAS  Google Scholar 

  • Long Q, Cai M, Rogers JD, Rong HL, Li JR, Jiang L (2007) Synthesis of nanostructured Pt/CeO2–ZrO2–Al2O3 catalysts by a two-step sol–gel method. Nanotechnology 18:355601. doi:10.1088/0957-4484/18/35/355601

    Article  Google Scholar 

  • Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    Article  CAS  Google Scholar 

  • Park KW, Seol KS (2007) Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem Commun 9:2256–2260

    Article  CAS  Google Scholar 

  • Rajalakshmi N, Lakshmi N, Dhathathreyan KS (2008) Nano titanium oxide catalyst support for proton exchange membrane fuel cells. Int J Hydrogen Energy 33:7521–7526

    Article  CAS  Google Scholar 

  • Reneker DH, Chun L (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223. doi:10.1088/0957-4484/7/3/009

    Article  CAS  Google Scholar 

  • Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145:2354–2358

    Article  CAS  Google Scholar 

  • Tekmen C, Suslu A, Cocen U (2008) Titania nanofibers prepared by electrospinning. Mater Lett 62:4470–4472

    Article  CAS  Google Scholar 

  • Teng XW, Black D, Watkins NJ, Gao YL, Yang H (2003) Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett 3:261–264

    Article  CAS  Google Scholar 

  • Tian ZQ, Jiang SP, Liang YM, Shen PK (2006) Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 110:5343–5350

    Article  CAS  Google Scholar 

  • Wei MD, Konishi Y, Zhou HS, Sugihara H, Arakawa H (2004) A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chem Phys Lett 400:231–234

    Article  CAS  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  • Yu WY, Tu WX, Liu HF (1999) Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir 15:6–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, Q., Cai, M., Li, J. et al. Improving the electrical catalytic activity of Pt/TiO2 nanocomposites by a combination of electrospinning and microwave irradiation. J Nanopart Res 13, 1655–1662 (2011). https://doi.org/10.1007/s11051-010-9919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9919-0

Keywords

Navigation