Skip to main content
Log in

Sonochemical synthesis and application of rhodium–graphene nanocomposite

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Highly water dispersible rhodium–graphene nanocomposite have been successfully synthesized by the simple reduction of Rh3+ salt on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO/PPO/PEO) triblock copolymer or pluronic-stabilized graphene oxide (GO) nanosheets with borohydride. Rhodium nanoparticles, having average size of 1–3 nm, are homogeneously distributed through out the graphene sheets. Some porous structures of graphene sheets have also been observed after the reduction of pluronic-stabilized GO in the presence of metal ions. The material is very effective for hydrogenation of arenes, especially for benzene as the substrate material at the room temperature and 5 atm pressure of hydrogen.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  • Ao ZM, Jiang Q, Zhang RQ, Tan TT, Li S (2009) A promising material for hydrogen storage at room temperature. J Appl Phys 105:074307

    Article  Google Scholar 

  • Ataca C, Aktürk E, Ciraci S (2009) Hydrogen storage of calcium atoms adsorbed on graphene: First-principles plane wave calculations. Phys Rev B 79:041406

    Article  Google Scholar 

  • Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470

    Article  CAS  Google Scholar 

  • Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayo D, Li TB, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191

    Article  CAS  Google Scholar 

  • Chandra S, Sahu S, Pramanik P (2010) A novel synthesis of graphene by dichromate oxidation. Mater Sci Eng B 167:133–136

    Article  CAS  Google Scholar 

  • Chattopadhyay J, Mukherjee A, Hamilton CE, Kang J, Chakraborty S, Guo W, Kelly KF, Barron AR, Billups WE (2008) Graphite epoxide. J Am Chem Soc 130(16):5414–5415

    Article  CAS  Google Scholar 

  • Cong HP, He JJ, Lu Y, Yu SH (2010) Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6: n/a

  • Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016

    Article  CAS  Google Scholar 

  • Dimitrakakis GK, Tylianakis E, Froudakis GE (2008) A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett 8(10):3166–3170

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51:186

    Article  Google Scholar 

  • Dujardin E, Ebbesen TW, Krishnan A, Treacy MM (1998) Wetting of single shell carbon nanotubes. Adv Mater 10:1472

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Gilje S, Song H, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394

    Article  CAS  Google Scholar 

  • Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802

    Article  CAS  Google Scholar 

  • Hannes CS, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Douglas HA, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    Article  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  • Jasuja K, Berry V (2009) Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement. ACS Nano 3(8):2358–2366

    Article  CAS  Google Scholar 

  • Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) STM investigation of single layer graphite structures produced on platinum (111) by hydrocarbon decomposition. Surf Sci 264:261–270

    Article  CAS  Google Scholar 

  • Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F (2010) Palladium nanoparticle–graphene hybrids as active catalysts for the Suzuki reaction. Nano Res 3:429–437

    Article  CAS  Google Scholar 

  • Liu ZM, Han BX (2009) Synthesis of carbon-nanotube composites using supercritical fluids and their potential applications. Adv Mater 21:825

    Article  CAS  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  CAS  Google Scholar 

  • McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    Article  CAS  Google Scholar 

  • Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112(14):5263–5266

    Article  CAS  Google Scholar 

  • Nath S, Kaittanis C, Tinkham A, Perez JM (2008) Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal Chem 80:1033–1038

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  CAS  Google Scholar 

  • Paek SM, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75

    Article  CAS  Google Scholar 

  • Pan HB, Wai CM (2009) Sonochemical one-pot synthesis of carbon nanotube-supported rhodium nanoparticles for room-temperature hydrogenation of arenes. J Phys Chem C 113:19782–19788

    Article  CAS  Google Scholar 

  • Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–578

    Article  CAS  Google Scholar 

  • Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5:2253–2259

    Article  CAS  Google Scholar 

  • Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajayan PM (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935

    Article  CAS  Google Scholar 

  • Shen J, Shi M, Li N, Yan B, Ma H, Hu Y, Ye M (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3:339–349

    Article  CAS  Google Scholar 

  • Si YC, Samulski ET (2008a) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797

    Article  CAS  Google Scholar 

  • Si Y, Samulski ET (2008b) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682

    Article  CAS  Google Scholar 

  • Sidorov AN, Yazdanpanah MM, Jalilian R, Ouseph J, Cohn RW, Sumanasekera (2007) Electrostatic deposition of graphene. Nanotechnology 18:135301

    Article  Google Scholar 

  • Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Article  CAS  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  • Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491

    Article  CAS  Google Scholar 

  • Xu C, Wang X (2009) Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small 5(19):2212–2217

    Article  CAS  Google Scholar 

  • Xu C, Wang X, Zhu J (2008a) Graphene–metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  • Xu C, Wang X, Zhu JW, Yang XJ, Lu LD (2008b) Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. J Mater Chem 18:5625–5629

    Article  CAS  Google Scholar 

  • Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9(6):2255–2259

    Article  CAS  Google Scholar 

  • Zu SZ, Han BH (2009) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J Phys Chem C 113:13651–13657

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Technology Information and Forecasting Assessment Council (TIFAC) and the Department of Science and Technology, Government of India for funding, and the Authority of Indian Institute of Technology, Kharagpur for providing operational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchanan Pramanik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 GC-MS spectrum of the hydrogenated product of benzene, in which n-heptane used as the solvent (TIF 1.78 mb)

11051_2010_164_MOESM2_ESM.tif

Fig. S2 GC-MS pattern of cyclohexane, after analysis the above GC-MS peak at the retention time 2.4 minute. No such type of peak was observed for benzene itself, which confirmed that 100% conversion of the substrate was done (TIF 1.98 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, S., Bag, S., Bhar, R. et al. Sonochemical synthesis and application of rhodium–graphene nanocomposite. J Nanopart Res 13, 2769–2777 (2011). https://doi.org/10.1007/s11051-010-0164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0164-3

Keywords

Navigation