Skip to main content
Log in

Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report extracellular biosynthesis of silver nanoparticles by Fusarium solani (USM-3799), a phytopathogen causing disease in onion, when challenged with 1 mM silver nitrate (AgNO3). The formation of nanoparticles was characterized by visual observation followed by UV–Vis spectrophotometric analysis, which showed a peak at about 420 nm, which is very specific for silver nanoparticles. Further analysis carried out by Fourier Transform Infrared Spectroscopy (FTIR), provides evidence for the presence of proteins as capping agent, which helps in increasing the stability of the synthesized silver nanoparticles. Transmission Electron Microscopy (TEM) investigations confirmed that silver nanoparticles were formed. The synthesized silver nanoparticles were found to be polydispersed, spherical in the range of 5–35 nm with average diameter of 16.23 nm. Extracellular synthesis of nanoparticles could be highly advantageous from the point of view of synthesis in large quantities and easy downstream processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry MJ (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by fungus Fusarium oxysporum. Am Chem Soc 124:12108–12109. doi:10.1021/ja027296o

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318. doi:10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodispersed gold nanoparticles by novel extermophillic actinomycetes, Thermomonospora sp. Langmuir 19:3550–3553. doi:10.1021/la026772l

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003c) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828. doi:10.1088/0957-4484/14/7/323

    Article  CAS  ADS  Google Scholar 

  • Anilkumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445. doi:10.1007/s10529-006-9256-7

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305. doi:10.1039/b407904c

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589. doi:10.1039/b503008k

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’souza SK (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164. doi:10.1016/j.colsurfb.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  • Cao G (ed) (2004) Nanostructures and nanomaterials: synthesis, properties, and applications. Imperial College Press, London

    Google Scholar 

  • Dickson DPE (1999) Nanostructured magnetism in living systems. J Magn Mater 203:46–49. doi:10.1016/S0304-8853(99)00178-X

    Article  CAS  ADS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, D’Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–14. doi:10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Frankel RB, Blakemore RP (1991) Iron biominerals. Plenum, New York

    Google Scholar 

  • Gade AK, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:1–5. doi:10.1166/jbmb.2008.204

    Article  Google Scholar 

  • Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic. Langmuir 17:1674–1679

    Article  CAS  Google Scholar 

  • Hayat MA (1989) Colloidal gold: principles, methods and applications. Academic Press, California

    Google Scholar 

  • Henglein A (1993) Physicochemical properties of small metal particles in solution: ‘‘microelectrode’’ reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem B 97:5457–5471. doi:10.1021/j100123a004

    Article  CAS  Google Scholar 

  • Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163:143–147. doi:10.1007/BF00381789

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115. doi:10.1088/0957-4484/18/10/105104

    Article  ADS  Google Scholar 

  • Husseiny MI, Ei-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta [A] 67:1003–1006. doi:10.1016/j.saa.2006.09.028

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. doi:10.2174/157341308784340804

    Article  CAS  ADS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614. doi:10.1073/pnas.96.24.13611

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132. doi:10.1126/science.286.5442.1129

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Yu S, Qian S, Zhou T (2005) Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxial nanoscale by a facial solution approach. J Am Chem Soc 127:2822–2823. doi:10.1021/ja0428154

    Article  CAS  PubMed  Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505. doi:10.1038/365499a0

    Article  CAS  ADS  Google Scholar 

  • Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318. doi:10.1038/382313a0

    Article  CAS  ADS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298. doi:10.1021/cg0255164

    Article  CAS  Google Scholar 

  • Oliver S, Kupermann A, Coombs N, Lough A, Ozin GA (1995) Lamellar luminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378:47–50. doi:10.1038/378047a0

    Article  CAS  ADS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.1021/jp063826h

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Srivastava SK (2006) A novel synthetic method for the preparation of CuS, and CdS nanochains. Synthesis and reactivity in inorganic, metal organic and nano metal. Chemistry (Easton) 36:663–666

    CAS  Google Scholar 

  • Riddin T, Gericke M, Whiteley C (2006) Analysis of inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489. doi:10.1088/0957-4484/17/14/021

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sastry M, Mayya KS, Bandyopadhyay K (1997) pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloid Surf A 127:221–228. doi:10.1016/S0927-7757(97)00087-3

    Article  CAS  Google Scholar 

  • Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 102:1404–1410. doi:10.1021/jp9719873

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  PubMed  Google Scholar 

  • Seifert K (1996) Fusarium interactive key. Agriculture and Agri Food Canada, pp 1–65

  • Shiv Shankar S, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631. doi:10.1021/bp034070w

    Article  PubMed  Google Scholar 

  • Shiv Shankar S, Rai A, Ahmad A, Sastry MJ (2004) Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using neem. J Colloid Interface Sci 275:496–502. doi:10.1016/j.jcis.2004.03.003

    Article  PubMed  Google Scholar 

  • Shiying H, Zhirui G, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987. doi:10.1016/j.matlet.2007.01.018

    Article  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101. doi:10.1016/j.colsurfb.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  • Spring H, Schleifer KH (1995) Diversity of magnetotactic bacteria. Syst Appl Microbiol 18:147–153

    Google Scholar 

  • Sushil KS, Mamta P (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509

    Google Scholar 

  • Vigneshwaram N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59. doi:10.1016/j.colsurfb.2006.07.014

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Carsten Sönnichsen and Dr. Sebastien Pierrat, Johannes Gutenberg University of Mainz, Germany for their help in TEM analysis and we are also thankful to Prof. Baharuddin Salleh, University Sains Malaysia, Malaysia for confirming the identification of F. solani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingle, A., Rai, M., Gade, A. et al. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11, 2079–2085 (2009). https://doi.org/10.1007/s11051-008-9573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9573-y

Keywords

Navigation