Skip to main content
Log in

A novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Preparation and characterization in vitro and in vivo of a novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide is reported in this paper. Precursory magnetic fluids stabilized with starch were prepared, in a polymeric starch matrix, by controlled chemical coprecipitation of magnetite phase from aqueous solutions. The average hydrodynamic diameter of starch-coated iron oxide nanoparticles (SIONs) was 46 nm. As a homing peptide, A54 is the most effective peptide specific to the human hepatocellular carcinoma cell line BEL-7402. Final magnetic fluids were obtained through chemical coupling of homing peptide labeled with 5-carboxyl-fluorescein (FAM-A54) and SIONs. Magnetic measurements showed the saturation magnetization value of SIONs amounted to 45 emu/g and the FAM-A54-coupled SIONs showed a good magnetic response in magnetic field. The results of experiments in vitro and in vivo showed that SIONs were endowed with specific affinity to corresponding tumor cells after coupling with FAM-A54 and the FAM-A54-coupled SIONs could be accumulated in the tumor tissue with more efficiency than individual magnetic targeting or biomolecular targeting. This novel magnetic fluid with dual function has great potential applications in diagnostics and therapeutics of human tumor such as drug targeting, magnetic hyperthermia, and magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic cancer targeting peptides. Biopolymers 66(3):184–199. doi:10.1002/bip.10257

    Article  PubMed  CAS  Google Scholar 

  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99(2):12617–12621. doi:10.1073/pnas.152463399

    Article  PubMed  ADS  CAS  Google Scholar 

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    PubMed  CAS  Google Scholar 

  • Asmatulua R, Zalichb MA, Claus RO, Riffleet JS (2005) Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J Magn Magn Mater 292:108–109. doi:10.1016/j.jmmm.2004.10.103

    Article  ADS  Google Scholar 

  • Berryl CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in Biomedicine. J Phys D Appl Phys 36:R198–R206

    Article  ADS  Google Scholar 

  • Bulte JWM, Zhang SC, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: MR tracking migration and myelination. Proc Natl Acad Sci USA 96(26):15256–15261. doi:10.1073/pnas.96.26.15256

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chen DH, Liao MH (2002) Preparation and characterization of YADH-bound magnetic nanoparticles. J Mol Catal B Enzym 16:283–291. doi:10.1016/S1381-1177(01)00074-1

    Article  CAS  Google Scholar 

  • Gan ZF, Jiang JS (2005) Preparation of magnetic monodisperse nanoparticles and biopolymer assemble on the magnetic carriers. Prog Chem 17(6):978–986

    CAS  Google Scholar 

  • Gan ZF, Jiang JS, Yang Y, Du B, Qian M, Zhang P (2008) Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J Biomed Mater Res A 84A(1):10–18. doi:10.1002/jbm.a.31181

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  PubMed  CAS  Google Scholar 

  • Hong X, Guo W, Yuan H, Li J, Liu Y, Ma L, Bai Y, Li T (2004) Periodate oxidation of nanoscaled magnetic dextran composites. J Magn Magn Mater 269:95–100. doi:10.1016/S0304-8853(03)00566-3

    Article  ADS  CAS  Google Scholar 

  • Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349. doi:10.1016/S0142-9612(03)00026-7

    Article  PubMed  CAS  Google Scholar 

  • Kim DK, Mikhaylova M, Wang FH, Kehr J, Bjelke B, Zhang Y, Tsakalakos T, Muhammed M (2003) Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem Mater 15:4343–4351. doi:10.1021/cm031104m

    Article  CAS  Google Scholar 

  • Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701

    PubMed  Google Scholar 

  • Matveev YI, van Soest JJG, Nieman C, Wasserman LA, Protserov VA, Ezernitskaja M, Yuryev VP (2001) The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr Polym 44:151–160. doi:10.1016/S0144-8617(00)00211-3

    Article  CAS  Google Scholar 

  • Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:1–9

    Google Scholar 

  • Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380(6572):364–366. doi:10.1038/380364a0

    Article  PubMed  ADS  CAS  Google Scholar 

  • Plaza RC, Vicente JD, Gómez-Lopera S, Delgado AV (2001) Stability of dispersions of colloidal nickel ferrite spheres. J Colloid Interface Sci 242:306–313. doi:10.1006/jcis.2001.7882

    Article  CAS  Google Scholar 

  • Qian M, Zhou ZL, Zhang P, Du B, Yu J, Yu M (2004) A hepatocarcinoma-binding peptide from a phage-display random peptide library identified by in vivo panning and its application. Chinese Patent No. 1563077

  • Selim KMK, Ha YS, Kim SJ, Chang Y, Kim TJ, Lee GH, Kang IK (2007) Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials 28:710–716. doi:10.1016/j.biomaterials.2006.09.014

    Article  Google Scholar 

  • Xu XQ, Shen H, Xu JR, Xu J, Li XJ, Xiong XM (2005) Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran. Appl Surf Sci 252:494–500. doi:10.1016/j.apsusc.2005.01.027

    Article  ADS  CAS  Google Scholar 

  • Yang X, Jiang J, Jing J, Hsia YF, Hu Z, Chen X, He Y (1992) Influence of solvent on the superparamagnetic relaxation of nanocrystalline Fe3O4 in ferrofluids. Hyperfine Interact 70:1129–1132. doi:10.1007/BF02397528

    Article  ADS  CAS  Google Scholar 

  • Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci 212:49–57. doi:10.1006/jcis.1998.5993

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561. doi:10.1016/S0142-9612(01)00267-8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research project is supported by Shanghai Nanotechnology Promotion Center (0352nm113, 0852nm03200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Sen Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, JS., Gan, ZF., Yang, Y. et al. A novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide. J Nanopart Res 11, 1321–1330 (2009). https://doi.org/10.1007/s11051-008-9534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9534-5

Keywords

Navigation