Skip to main content
Log in

Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles of magnetite (Fe3O4) and hematite (α-Fe2O3) have been prepared by a simple microwave heating method using FeCl3, polyethylene glycol and N2H4·H2O. The amount of N2H4·H2O has an effect on the final phase of Fe3O4. The morphology of α-Fe2O3 was affected by the heating method. Crystalline α-Fe2O3 agglomerates were formed immediately at room temperature and most of these nanoparticles within agglomerates show the same orientation along [110] direction. After microwave heating, ellipsoidal α-Fe2O3 nanoparticles were formed following an oriented attachment mechanism. Both Fe3O4 and α-Fe2O3 nanoparticles exhibit a small hysteresis loop at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi M., Murata Y., Takao J., Jiu J., Sakamoto M. and Wang F., (2004). Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “Oriented Attachment” mechanism. J. Am. Chem. Soc. 126: 14943–14949

    Article  CAS  Google Scholar 

  • Alivisatos A.P., (2000). Naturally aligned nanocrystals. Science 289: 736–737

    Article  CAS  Google Scholar 

  • Banfield J.F., Welch S.A., Zhang H.Z., Ebert T.T. and Penn R.L., (2000). Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289: 751–754

    Article  CAS  Google Scholar 

  • Bensebaa F., Zavaliche F., L’Ecuyer P., Cochrane R.W. and Veres T., (2004). Micorwave synthesis and characterization of Co-ferrite nanoparticles. J. Colloid Interf. Sci. 277: 104–110

    Article  CAS  Google Scholar 

  • Caillot T., Aymes D., Stuerga D., Viart N. and Pourroy G., (2002). Microwave flash synthesis of iron and magnetite particles by disproportionation of ferrous alcoholic solutions. J. Mater. Sci. 37: 5153–5158

    Article  CAS  Google Scholar 

  • Cheng F.Y., Su C.H., Yang Y.S., Yeh C.S., Tsai C.Y., Wu C.L., Wu M.T. and Shieh D.B., (2005). Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26: 729–738

    Article  CAS  Google Scholar 

  • Cheng Y., Wang Y.S., Chen D.Q. and Bao F., (2005). Evolution of single crystalline dendrites from nanoparticles through oriented attachment. J. Phys. Chem. B 109: 794–798

    Article  CAS  Google Scholar 

  • Deshpande K., Mukasyan A. and Varma A., (2004). Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem. Mater. 16: 4896–4904

    Article  CAS  Google Scholar 

  • Goya G.F., Veith M., Rapalavicuite R., Shen H. and Mathur S., (2005). Thermal hysteresis of spin reorientation at Morin transition in alkoxide derived hematite nanoparticles. Appl. Phys. A-Mater. 80: 1523–1526

    Article  CAS  Google Scholar 

  • Jana N.R., Chen Y.F. and Peng X.G., (2004). Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 16: 3931–3935

    Article  CAS  Google Scholar 

  • Jia Z.B., Wei Y. and Wang H.M., (2000). Preparation of ultrafine hematite particles by microwave heating of ferric salt solution. J. Inorg. Mater. 15: 926–928

    CAS  Google Scholar 

  • Jiang Y. and Zhu Y.J., (2005). Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid. J. Phys. Chem. B 109: 4361–4364

    Article  CAS  Google Scholar 

  • Jing Z.H., Han D.Z. and Wu S.H., (2005). Morphological evolution of hematite nanoparticles with and without sufactant by hydrothermal method. Mater. Lett. 59: 804–807

    Article  CAS  Google Scholar 

  • Josephson L., Tsung C.H., Moore A. and Weissleder R., (1999). High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjucates. Bioconjugate Chem. 10: 186–191

    Article  CAS  Google Scholar 

  • Katsuki H. and Komarneni S., (2001). Microwave-hydrothermal synthesis of monodispersed nanophase alpha-Fe2O3. J. Am. Ceram. Soc. 84: 2313–2317

    Article  CAS  Google Scholar 

  • Katsuki H., Shiraishi A., Komarneni S., Moon W.J., Toh S. and Kaneko K., (2004). Rapid synthesis of monodispersed alpha-Fe2O3 nanoparticles from Fe(NO3)3 solution by microwave irradiation. J. Ceram. Soc. Jpn. 112: 384–387

    Article  CAS  Google Scholar 

  • Lee D.K. and Kang Y.S., (2004). New synthetic method of magnetite nanocrystallites using γ-irradiation. Mol. Cryst. Liq. Cryst. 424: 85–94

    Article  CAS  Google Scholar 

  • Li Q. and Wei Y., (1998). Study on preparing monodispersed hematite nanoparticles by microwave-induced hydrolysis of ferric salts solution. Mater. Res. Bull. 33: 779–782

    Article  CAS  Google Scholar 

  • Liao X., Zhu J.J., Zhong W. and Chen H., (2001). Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation. Mater. Lett. 50: 341–346

    Article  CAS  Google Scholar 

  • Lopez-Quintela M.A. and Rivas J., (1993). Chemical-reactions in microemulsions- a powerful method to obtain ultrafine particles. J. Colloid Interf. Sci. 158: 446–451

    Article  CAS  Google Scholar 

  • Mansur H.S., Oréfice R.L. and Mansur A., (2004). Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45: 7193–7202

    Article  CAS  Google Scholar 

  • McMichael R.D., Shull R.D., Swartzendruber L.J., Bennett L.H. and Watson R.E., (1992). Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 111: 29–33

    Article  CAS  Google Scholar 

  • Mikhaylova M., Kim D.K., Bobrysheva N., Osmolowsky M., Semenov V., Tsakalakos T. and Muhammed M., (2004). Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20: 2472–2477

    Article  CAS  Google Scholar 

  • Muench G.J., Arajs S. and Matijević E., (1981). Magnetic properties of monodispersed submicromic α-Fe2O3 particles. J. Appl. Phys. 52: 2493–2495

    Article  CAS  Google Scholar 

  • Namboodiri V.V. and Varma R.S., (2001). Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chem. 3: 146–148

    Article  CAS  Google Scholar 

  • Ocana M., Morales M. and Serna C.J., (1995). The growth-mechanism of alpha-Fe2O3 ellipsoidal particles in solution. J. Colloid Interf. Sci. 171: 85–91

    Article  CAS  Google Scholar 

  • Palchik O., Felner I., Kataby G. and Gedanken A., (2000). Amorphous iron oxide prepared by microwave heating. J. Mater. Res. 15: 2176–2181

    CAS  Google Scholar 

  • Patnaik P., 2002. Handbook of Inorganic Chemistry. (ISBN 0-07-049439-8), the McGraw-Hill Companies, 344.

  • Penn R.L. and Banfield J.F., (1998). Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281: 969–971

    Article  CAS  Google Scholar 

  • Penn R.L. and Banfield J.F., (1999). Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochem. Cosmochim. Acta 63: 1549–1557

    Article  CAS  Google Scholar 

  • Rigneau P., Bellon K., Zahreddine I. and Stuerga D., (1999). Microwave flash-synthesis of iron oxides nanoparticles. Eur. Phys. J. 7: 41–43

    Article  CAS  Google Scholar 

  • Schwertmann U., Friedl J. and Stanjek H., (1999). From Fe(III) ions to ferrihydrite and then to hematite. J. Colloid Interf. Sci. 209: 215–223

    Article  CAS  Google Scholar 

  • Shafi K.V.P., Ulman A., Dyal A., Yan X.Z., Yang N.L., Estourne’s C., Fourne’s L., Wattiaux A., White H. and Rafailovich M., (2002). Magnetic enhancement of γ-Fe2O3 nanoparticles by sonochemical coating. Chem. Mater. 14: 1778–1787

    Article  CAS  Google Scholar 

  • Saravanan L. and Subramanian S., (2005). Surface chemical studies on the competitive adsorption poly(ethylene glycol) and ammonium poly (methacrylate) onto of alumina. J. Colloid Interf. Sci. 284: 363–377

    Article  CAS  Google Scholar 

  • Si S.F., Li C.H., Wang X., Yu D.P., Peng Q. and Li Y.D., (2005). Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des. 5: 391–393

    Article  CAS  Google Scholar 

  • Wang J., Chen Q., Zeng C. and Hou B.Y., (2004). Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 16: 137–140

    Article  CAS  Google Scholar 

  • Wang W.W. and Zhu Y.J., (2004). Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg. Chem. Commun. 7: 1003–1005

    Article  CAS  Google Scholar 

  • Wang W.W. and Zhu Y.J., (2005). Synthesis of PbCrO4 and Pb2CrO5 rods via a microwave-assisted ionic liquid method. Cryst. Growth Des. 5: 505–507

    Article  CAS  Google Scholar 

  • Wang W.Z., Zhan Y.J. and Wang G.H., (2001). One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable sufactant. Chem. Commun. 8: 727–728

    Article  Google Scholar 

  • Yin M., Willis A., Redl F., Turro N.J. and O’Brien S.P. (2004). Influence of capping groups on the synthesis of gamma-Fe2O3 nanocrystals. J. Mater. Res., 19: 1208–1215

    Article  CAS  Google Scholar 

  • Zboril R., Mashlan M. and Petridis D., (2002). Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14: 969–982

    Article  CAS  Google Scholar 

  • Zhou Z.H., Wang J., Liua X. and Chanb H.S.O., (2001). Synthesis of Fe3O4 nanoparticles from emulsions. J. Mater. Chem. 11: 1704–1709

    Article  CAS  Google Scholar 

  • Zhu Y.J., Wang W.W., Qi R.J. and Hu X.L., (2004). Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem. Int. Ed. 43: 1410–1414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from National Natural Science Foundation of China (50472014) and Chinese Academy of Sciences under the Program for Recruiting Outstanding Overseas Chinese (Hundred Talents Program) is gratefully acknowledged. We thank the Fund for Innovation Research from Shanghai Institute of Ceramics, Chinese Academy of Sciences and the Natural Science Foundation from Science and Technology Committee of Shanghai (03ZR14104), P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jie Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, WW., Zhu, YJ. & Ruan, ML. Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res 9, 419–426 (2007). https://doi.org/10.1007/s11051-005-9051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9051-8

Keywords

Navigation