Skip to main content

Advertisement

Log in

Biodistribution and tumor uptake of C60(OH) x in mice

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Radiolabeling of fullerol, 125I–C60(OH) x , was performed by the traditional chloramine-T method. The C–I covalent bond in I–C60(OH) x was characterized by X-ray photoelectron spectroscopy (XPS) that was sufficiently stable for in vivo study. Laser light scattering spectroscopy clearly showed that C60(OH) x aggregated to large nanoparticle clumps with a wide range of distribution. The clumps formed were also visualized by transmission electron microscope (TEM). We examined the biodistribution and tumor uptake of C60(OH) x in five mouse bearing tumor models, including mouse H22 hepatocarcinoma, human lung giantcellcarcinoma PD, human colon cancer HCT-8, human gastric cancer MGC803, and human OS732 osteosarcoma. The accumulation ratios of 125I–C60(OH) x in mouse H22 hepatocarcinoma to that in normal muscle tissue (T/N) and blood (T/B) at 1, 6, 24 and 72 h, reveal that 125I–C60(OH) x gradually accumulates in H22 tumor, and retains for a quite long period (e.g., T/N 3.41, T/B 3.94 at 24 h). For the other four tumor models, the T/N ratio at 24 h ranges within 1.21–6.26, while the T/B ratio ranges between 1.23 and 4.73. The accumulation of C60(OH) x in tumor is mostly due to the enhanced permeability and retention effect (EPR) and the phagocytosis of mononuclear phagocytes. Hence, C60(OH) x might serve as a photosensitizer in the photodynamic therapy of some kinds of tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein R., Prat F., Foote C.S. (1999) On the mechanism of DNA cleavage by fullerenes investigated in model systems: electron transfer from guanosine and 8-oxo-guanosine derivatives to C60. J. Am. Chem. Soc. 121: 464–465

    Article  CAS  Google Scholar 

  • Bianco A., Maggini M., Scorrano G., Toniolo C., Marconi G., Villani C., Prato M. (1996) Synthesis, chiroptical properties, and configurational assignment of fulleroproline derivatives and peptides. J. Am. Chem. Soc. 118: 4072–4080

    Article  CAS  Google Scholar 

  • Brettreich M., Hirsch A. (1998) A highly water-soluble dendro[60]fullerene. Tetrahedron Lett. 39: 2731–2734

    Article  CAS  Google Scholar 

  • Brigger I., Dubernet C., Couvreur P. (2002) Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliver. Rev. 54: 631–651

    Article  CAS  Google Scholar 

  • Bullard-Dillard R., Creek K.E., Scrivens W.A., Tour J.M. (1996) Tissue sites of uptake of 14C-labeled C60. Bioorg. Chem. 24: 376–385

    Article  CAS  Google Scholar 

  • Burley, G.A., Keller, P.A., Pyne, S.G. & G.E. Ball, 1998. Synthesis of a 1,2-dihydro[60]fullerylglycine derivative by a novel cyclopropane ring opening of a methano[60]fullerene. Chem. Commun., 2539–2540

  • Cagle D.W., Kennel S.J., Mirzadeh S., Alford J.M., Wilson L.J. (1999) In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Natl. Acad. Sci. USA 96: 5182–5187

    Article  CAS  Google Scholar 

  • Chen Y., Cai R.F., Chen S.M., Huang Z.E. (2001) Synthesis and characterization of fullerol derived from C60(n) precursors. J. Phys. Chem. Solids 62: 999–1001

    Article  CAS  Google Scholar 

  • Cusan, C., Da Ros, T. Spalluto, G., Foley, S., Janot, J.M., Seta, P., Larroque, C., Tomasini, M.C., Antonelli, T., Ferraro, L. & M. Prato, 2002. A new multi-charged C60 derivative: synthesis and biological properties. Eur. J. Org. Chem., 2928–2934

  • Dugan L.L., Gabrielsen J.K., Yu S.P., Lin T.S., Choi D.W. (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis. 3: 129–135

    Article  CAS  Google Scholar 

  • Friedman S.H., DeCamp D.L., Sijbesma R.P., Srdanov G., Wudl F., Kenyon G.L. (1993) Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc. 115: 6506–6509

    Article  CAS  Google Scholar 

  • Guldi D.M., Asmus K.D. (1999) Activity of water-soluble fullerenes towards (OH)-O-center dot-radicals and molecular oxygen. Radiat. Phys. Chem. 56: 449–456

    Article  CAS  Google Scholar 

  • Hirsch A., Lamparth I., Grösser T. (1994) Regiochemistry of multiple additions to the fullerene core: Synthesis of a th-symmetric hexakis adduct of C60 with bis(ethoxycarbonyl)methylene. J. Am. Chem. Soc. 116: 9385–9386

    Article  CAS  Google Scholar 

  • Hobbs S., Monsky W.L., Yuan F., Robersts W.G., Griffith L., Torchilin V.P., Jain R.K. (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenviroment. Proc. Natl. Acad. Sci. USA 95: 4607–4612

    Article  CAS  Google Scholar 

  • Hsu S.C., Wu C.C., Luh T.Y., Chou C.K., Han S.H., Lai M.Z. (1998) Apoptotic signal of Fas is not mediated by ceramide. Blood 91: 2658–2663

    CAS  Google Scholar 

  • Kim S.H., Son H., Nam G., Chi D.Y., Kim J.H. (2000) Synthesis and in vitro antibacterial activity of 3-[N-methyl-N-(3-methyl-1,3-thiazolium-2-yl)amino]methyl cephalosporin derivatives. Bioorg. Med. Chem. Lett. 10: 1143–1145

    Article  CAS  Google Scholar 

  • Krätschemer W., Lamb L.D., Fostiropoulos K., Huffman (1990) Solid C60: a new form of carbon. Nature 347: 354–358

    Article  Google Scholar 

  • Krstic J.S. (1997) Effects of C60(OH)24 on microtubule assembly. Arch. Oncol. 5: 143–147

    Google Scholar 

  • Li, J., Takeuchi, A., Ozawa, M., Li, X.H., Saigo, K. & K. Kitazawa, 1993. C60 fullerol formation catalyzed by quaternary ammonium hydroxides. J. Chem. Soc. Chem. Commun., 1784–1785

  • Li Q.N., Xiu Y., Zhang X.D., Liu R.L., Du Q.Q., Shun X.Q., Chen S.L., Li W.X. (2002) Preparation of 99 mTc-C60(OH)x and its biodistribution studies. Nucl. Med. Biol. 29: 707–710

    Article  CAS  Google Scholar 

  • Maeda H. (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41: 189–207

    Article  CAS  Google Scholar 

  • Matsumura Y., Maeda H. (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46: 6387–6392

    CAS  Google Scholar 

  • Satoh M., Matsuo K., Kiriya H., Mashino T., Nagano T., Hirobe M., Takayanagi I. (1997) Inhibitory effects of a fullerene derivative, dimalonic acid C60, on nitric oxide-induced relaxation of rabbit aorta. Eur. J. Pharmacol. 327: 175–181

    Article  CAS  Google Scholar 

  • Tabata Y., Ikada Y. (1999) Biological functions of fullerene. Pure & Appl. Chem. 71: 2047–2053

    Article  CAS  Google Scholar 

  • Tokuyama H., Yamago S., Nakamura E., Shiraki T., Sugiura Y. (1993) Photoinduced biochemical activity of fullerene carboxylic acid. J. Am. Chem. Soc. 115: 7918–7919

    Article  CAS  Google Scholar 

  • Ueng T.H., Kang J.J., Wang H.W., Cheng Y.W., Chiang L.Y. (1997) Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol. Lett. 93: 29–37

    Article  CAS  Google Scholar 

  • Wang I.C., Tai L.A., Lee D.D., Kanakamma P.P., Shen C.K.F., Luh T.Y., Chen C.H., Hwang K.C. (1999) C60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J. Med. Chem. 42: 4614–4620

    Article  CAS  Google Scholar 

  • Wang H.F., Wang J., Deng X.Y., Sun H.F., Shi Z.J., Gu Z.N., Liu Y.F., Zhao Y.L. (2004) Biodistribution of carbon single-wall nanotubes in mice. J. Nanosci. Nanotech. 4(8): 1–6

    Article  Google Scholar 

Download references

Acknowledgements

We thank the support from the National Natural Science Foundation of China (Grant No. 10490180 and 90406024-5). And we thank Dr. YiQun Gu for her help in the pathology analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Z., Sun, H., Wang, H. et al. Biodistribution and tumor uptake of C60(OH) x in mice. J Nanopart Res 8, 53–63 (2006). https://doi.org/10.1007/s11051-005-9001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9001-5

Key words:

Navigation