Skip to main content
Log in

Constrained inflation of a stretched hyperelastic membrane inside an elastic cone

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper studies the inflation and interaction mechanics of a flat circular membrane inside an elastic cone under the action of uniform gas pressure. The membrane is assumed to be a homogeneous and isotropic Mooney–Rivlin hyperelastic material, while the conical surface is taken to be a distributed linear stiffness in the direction normal to the undeformed surface. The set of coupled second order nonlinear ordinary differential equations that governs the constrained inflation mechanics is reduced to a set of four first order ordinary differential equations by change of variables. A two dimensional grid search technique using the bisection method is employed to determine the equilibrium configuration of the inflated membrane. The principal stretches and curvatures have been obtained which exhibit some interesting trends. It is observed that the limit point instability can completely disappear (even in the case of neo-Hookean membrane material model) when an inflating membrane interacts with a constraining surface. Most remarkably, pre-stretching the membrane can revive the occurrence of the limit point instability in certain cases leading to a softening behavior. This counterintuitive effect appears to be a shadow of the stretch induced softening behavior observed recently in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adkins JE, Rivlin RS (1952) Large elastic deformation of isotropic materials. ix. Philos Trans R Soc Ser A 244:505–531

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Antonio JG, Bonet J (2006) Finite element analysis of prestressed structural membranes. Finite Elem Anal Des 42:683–697

    Article  Google Scholar 

  3. Arruda E, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412

    Article  ADS  Google Scholar 

  4. Campbell JD (1956) On the theory of initially tensioned circular membranes subjected to uniform pressure. Q J Mech Appl Math 9(1):84–93

    Article  MATH  Google Scholar 

  5. Charrier JM, Shrivastava S, Wu R (1987) Free and constrained inflation of elastic membranes in relation to thermoforming-axisymmetric problems. J Strain Anal Eng 22(2):115–125

    Article  Google Scholar 

  6. Charrier JM, Shrivastava S, Wu R (1989) Free and constrained inflation of elastic membranes in relation to thermoforming-non-axisymmetric problems. J Strain Anal Eng 24(2):55–74

    Article  Google Scholar 

  7. Christensen RM, Feng WW (1986) Nonlinear analysis of the inflation of an initially flat, circular, elastic disk. J Rheol 30:157–165

    Article  ADS  Google Scholar 

  8. Eriksson A, Nordmark A (2012) Instability of hyper-elastic balloon-shaped space membranes under pressure loads. J Comput Methods Appl Mech Eng 237:118–129

    Article  ADS  MathSciNet  Google Scholar 

  9. Evans E, Needham D (1987) Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 91:4219–4228

    Article  Google Scholar 

  10. Feng WW, Huang P (1974) On the general contact problem of an inflated nonlinear plane membrane. Int J Solids Struct 11:437–448

    Article  Google Scholar 

  11. Feng WW, Huang P (1974) On the inflation problem of a plane nonlinear membrane. J Appl Mech 40:9–12

    Google Scholar 

  12. Feng WW, Yang WH (1973) On the contact problem of an inflated spherical nonlinear membrane. J Appl Mech 40:209–214

    Article  Google Scholar 

  13. Foster HO (1967) Inflation of a plane circular membrane. J Eng Ind 89:403–407

    Article  Google Scholar 

  14. Foster HO (1967) Very large deformations of axially symmetrical membranes made of neo-Hookean materials. Int J Eng Sci 5:95–117

    Article  Google Scholar 

  15. Fung YC (ed) (1990) Biomechanics: motion, flow, stress, and growth. Springer, New York

    MATH  Google Scholar 

  16. Goncalves PB, Soares RM, Pamplona D (2009) Nonlinear vibrations of a radially circular hyperelastic membrane. J Sound Vib 327:231–248

    Article  ADS  Google Scholar 

  17. Green AE, Adkins JE (1970) Large elastic deformation. Oxford University Press, London

    Google Scholar 

  18. Hart-Smith LJ, Crisp JDC (1967) Large elastic deformations of thin rubber membranes. Int J Eng Sci 5(1):1–24

    Article  MATH  Google Scholar 

  19. Holzapfel GA, Eberlein R, Wriggers P, Weizsacker HW (1996) Large strain analysis of soft biological membranes:formulation and finite element analysis. J Comput Methods Appl Mech Eng 132:45–61

    Article  ADS  MATH  Google Scholar 

  20. Humphrey JD (ed) (2002) Cardiovascular solid mechanics: cells, tissues and organs. Springer, New York

    Google Scholar 

  21. Hung ND, Saxce G (1980) Frictionless contact of elastic bodies by finite element method and mathematical programming. Comput Struct 11:5567

    Article  Google Scholar 

  22. Jenkins CHM (ed) (2001) Gossamer spacecraft: membrane and inflatable structures technology for space applications, vol 191. American Institute of Aeronautics and Astronautics Inc., Reston

    Google Scholar 

  23. Klingbeil WW, Shield RT (1964) Some numerical investigation on empirical strain energy functions in the large axisymmetric extension of rubber membranes. J Appl Math Phys 15:608–629

    Article  Google Scholar 

  24. Kumar N, DasGupta A (2013) On the contact problem of an inflated spherical hyperelastic membrane. Int J Non-Linear Mech 57:130–139

    Article  Google Scholar 

  25. Kumar N, DasGupta A (2014) Contact mechanics and induced hysteresis at oscillatory contacts with adhesion. Langmuir 30:9107–9114

    Article  Google Scholar 

  26. Khayat RE, Derdouri A (1994) Inflation of hyperelastic cylindrical membranes as application to blow molding: Part I—Axisymmetric case. J Numer Methods Eng 37(22):3773–3791

    Article  MATH  Google Scholar 

  27. Lardner T, Pujara P (1980) Compression of spherical cells. Mech. Today 5:161–176

    Article  MathSciNet  Google Scholar 

  28. McGarry GJ, Prendergast PJ (2004) A three dimensional finite element model of an adherent eukaryotic cell. J Eur Cell Mater 7:27–34

    Google Scholar 

  29. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592

    Article  ADS  MATH  Google Scholar 

  30. Nadler B (2010) On the contact of spherical membrane enclosing a fluid with rigid parallel planes. J Non-linear Mech 45(3):294–300

    Article  Google Scholar 

  31. Needleman A (1977) Inflation of spherical rubber balloons. Int J Solids Struct 13:409–421

    Article  Google Scholar 

  32. Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experimental for compressible rubber like solids. Philos Trans R Soc Ser A 326(1567):567–583

    ADS  Google Scholar 

  33. Ogden RW (1997) Non-linear elastic deformations. Dover, New York

    Google Scholar 

  34. Patil A, DasGupta A (2013) Finite inflation of an initially stretched hyperelastic circular membrane. Eur J Mech A Solids 41:28–36

    Article  MathSciNet  Google Scholar 

  35. Patil A, Nordmark A, Eriksson A (2014) Free and constrained inflation of a pre-stretched cylindrical membrane. Proc R Soc A 470, No. 20140282

  36. Pujara P, Lardner TJ (1978) Deformation of elastic membranes: effect of different constitutive relations. J Appl Math Phys 29:315–327

    Article  MATH  Google Scholar 

  37. Rao PVM, Dhande SG (1999) Deformation analysis of thin elastic membranes in multiple contact. Adv Eng Softw 30:177–183

    Article  Google Scholar 

  38. Rivlin RS (1948) Large elastic deformations of isotropic materials. i. Fundamental concepts. Philos Trans R Soc Ser A 240(822):459–490

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Schweizerhof K, Rumpel T, Habler M (2005) Efficient finite element modelling and simulation of gas and fluid supported membrane and shell structures. Comput Methods Appl Sci 3:153–172

    Article  Google Scholar 

  40. Shrivastava S, Tang J (1993) Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J Strain Anal Eng 28(1):115–125

    Article  Google Scholar 

  41. Tamadapu G, DasGupta A (2012) In-plane surface modes of an elastic toroidal membrane. Int J Eng Sci 60:25–36

    Article  MathSciNet  Google Scholar 

  42. Tamadapu G, DasGupta A (2013) Finite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-section. Int J Non-Linear Mech 49:31–39

    Article  Google Scholar 

  43. Tamadapu G, DasGupta A (2013) In-plane dynamics of membranes having constant curvature. Eur J Mech A Solids 39:280–290

    Article  MathSciNet  Google Scholar 

  44. Tielking JT, Feng WW (1974) The application of the minimum potential energy principle to nonlinear axisymmetric membrane problems. J Appl Mech 41:491–496

    Article  MATH  Google Scholar 

  45. Wong FS, Shield RT (1969) Large plane deformations of thin elastic sheets of neo-Hookean material. J Appl Math Phys 20(2):176–199

    Article  MATH  Google Scholar 

  46. Yang WH, Feng WW (1970) On axisymmetrical deformations of nonlinear membranes. J Appl Mech 37(4):1002–1011

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A., DasGupta, A. Constrained inflation of a stretched hyperelastic membrane inside an elastic cone. Meccanica 50, 1495–1508 (2015). https://doi.org/10.1007/s11012-015-0102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0102-7

Keywords

Navigation