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Abstract

A new approach to Poisson approximation is proposed. The basic idea is very simple and based
on properties of the Charlier polynomials and the Parseval identity. Such an approach quickly leads
to new effective bounds for several Poisson approximation problems. A selected survey on diverse
Poisson approximation results is also given.
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1 Introduction

Poisson approximation to many discrete distributions (notably the Poisson-binomial distribution) has re-
ceived extensive attention in the literature and many different approaches have been proposed. The main
problem is to study the closeness between the discrete distribution in question and a suitably chosen Pois-
son distribution. Applications in diverse problems also stimulated much of its recent interest among prob-
abilists and scientists in applied disciplines. We proposein this paper a new, self-contained approach
to Poisson approximation, which leads readily to many new effective bounds for several distances studied
before, including total variation, Kolmogorov, Wasserstein, Kullback-Leibler, point metric, andχ2; see be-
low for more information and references. In addition to the application to these distances, we also attempt
to survey most of the quantitative results we collected for the Poisson approximation distances discussed
in this paper.

1.1 A historical account with brief review of results

We start with a brief historical account of Poisson approximation, focusing particular on the evolution of
the total variation distance; a more detailed, technical discussion will be given in Section6. For other
surveys, see [38, 9, 4, 22, 72].
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The early history of Poisson approximation. Poisson distribution appeared naturally as the limit of
the sum of a large number of independent trials each with verysmall probability of success. Such a limit
form, being the most primitive version of Poisson approximation, dates back to at least de Moivre’s work
[32] in the early eighteenth century and Poisson’s book [61] in the nineteenth century. Haight [38] writes:
“. . . although Poisson (or de Moivre) discovered the mathematical expression (1.1-1) [which ise−λλk/k!],
Bortkiewicz discovered the probability distribution (1.1-1).” And according to Good [37], “perhaps the
Poisson distribution should have been named after von Bortkiewicz (1898) because he was the first to write
extensively about rare events whereas Poisson added littleto what de Moivre had said on the matter and
was probably aware of de Moivre’s work;” see also Seneta’s account in [74] on Abbe’s work. In addition
to Bortkiewicz’s book [17], another important contribution to the early history of Poisson approximation
was made by Charlier [21] for his type B expansion, which will play a crucial role in our development of
arguments.

The next half a century or so after Bortkiewicz and Charlier then witnessed an increase of interests in
the properties and applications of the Poisson distribution and Charlier’s expansion. In particular, Jordan
[47] proved the orthogonality of the Charlier polynomials withrespect to the Poisson measure, and con-
sidered a formal expansion pair, expressing the Taylor coefficients of a given function in terms of series
of Charlier polynomials and vice versa. A sufficient condition justifying the validity of such an expansion
pair was later on provided by Uspensky [83]; he also derived very precise estimates for the coefficients in
the case of binomial distribution. His complex-analytic approach was later on extended by Shorgin [80] to
the more general Poisson-binomial distribution (each trial with a different probability; see next paragraph).
Schmidt [73] then gives a sufficient and necessary condition for justifying the Charlier-Jordan expansion;
see also Boas [13] and the references therein. Prohorov [65] was the first to study, using elementary argu-
ments, the total variation distance between binomial and Poisson distributions, thus upgrading the classical
limit theorem to an approximation theorem.

From classical to modern. However, a large portion of the development of modern theoryof Poisson ap-
proximation deviates significantly from the classical line, and much of its modern interest can be attributed
to the pioneering paper by Le Cam [54], extending the previous study by Prohorov [65] for binomial dis-
tribution. Le Cam considered particularly the sumSn of n independent Bernoulli random variables with
parametersp1, p2, . . . , pn, respectively, and proved that the total variation distance

dTV (L (Sn),P(λ)) :=
1

2

∑

j>0

∣

∣

∣

∣

P(Sn = j)− e−λ
λj

j!

∣

∣

∣

∣

between the distribution ofSn (often referred to as the Poisson-binomial distribution) and that of a Poisson
with meanλ :=

∑

16j6n pj is bounded above by

dTV (L (Sn),P(λ)) 6 8θ,

wheneverp∗ := maxj pj 6 1/4, whereθ := λ2/λ, λ2 :=
∑

16j6n p
2
j . He also proved in the same paper

the following inequality, now often referred to under his name,

dTV (L (Sn),P(λ)) 6 λ2. (1.1)

These results were later on further improved in the literature and the approach he used became the source
of developments of more advanced tools; see Table1.1 for a selected list of known results of the simplest
form dTV 6 cθ.
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Author(s) Year dTV 6 Assumption Approach

Le Cam 1960 8θ p∗ 6
1
4

Operator and Fourier
Kerstan 1964 1.05θ p∗ 6

1
4

Operator and Fourier
Chen 1974 5θ Chen-Stein

Barbour and Hall 1984 θ Chen-Stein
Presman 1985 2.08θ Fourier

Daley and Vere-Jones1988 0.71θ p∗ 6
1
4

Fourier

Table 1:Some results of the formdTV := dTV (L (Sn),P(λ)) 6 cθ. Hereθ := λ2/λ andp∗ := maxj pj.
It is known thatdTV (L (Sn),P(λ)) ∼ θ/

√
2πe whenθ → 0; see Deheuvels and Pfeifer [30] or Hwang

[43]. Numerically,1/
√
2πe ≈ 0.242.

Form Table1.1, we should point out that the leading constant in the first-order estimate fordTV is often
less important than the generality of the approach used, although the pursuit for optimal leading constant is
of independent interestper se. One reason is that if an approach is quickly amended for obtaining higher-
order estimates, then one can push the calculations furtherby obtaining more terms in the asymptotic
expansions with smaller and smaller errors, so that the implied constants in the error terms matter less (the
derivation of which often involves detailed calculus).

On the other hand, estimates for the total variation distance between the distribution ofSn and a suitably
chosen Poisson distribution has been the subject of many papers in the last five decades. Other forms in the
literature includedTV 6 ϕ(θ), dTV 6 ϕ(θ,maxj pj), dTV 6 ϕ(θ, λ), . . . , for certain functionalsϕ (ϕ not
the same for each occurrence). Thus it is often difficult to compare these results; further complications arise
because some metrics are related to others by simple inequalities and the results for one can be transferred
to the others; also the complexity of the diverse methods of proof is not easily compared. Despite these,
we quickly review those that are pertinent to ours, a more detailed, technical comparative discussion for
some of these will be given later; the special case of binomial distribution will however not be compared
separately; see, for example, Prohorov [65], Vervaat [84], Romanowska [67], Matsunawa [56], Pfeifer
[59], Kennedy and Quine [48], Poor [63].

Kerstan [49] refined some results of Le Cam [54] on dTV by a similar approach. He also derived
a second-order estimate. Herrmann [39] further extended results in Kerstan [49] in two directions: to
sums of random variables each assuming finitely many integervaluesand, in addition to higher-order
estimates from the Charlier expansion, tosigned measureswhose generating functions are of the forms
exp(

∑

16j6s(−1)j−1λj(z − 1)j/j). We will comment on Kerstan’s and Herrmann’s second-order esti-
mates later. As far as we are aware, Herrmann [39] was the first to use such signed measures for Poisson
approximation problems, although such approximations arelater on referred to as Kornya-Presman or
Kornya-type approximations, the two references being Kornya [52] and Presman [64]. Note that the idea
of using other signed measures (binomial) were already discussed in Le Cam [54]. Serfling [75] extended
Le Cam’s inequality (1.1) to dependent cases; see also [76]. Chen [23] proposed a new approach to Poisson
approximation, based on Stein’s method of normal approximation (see Stein [78]).

From 1980 on, most of the approaches proposed previously forPoisson approximation problems re-
ceived much more attention and were further developed and refined. Among these,the Chen-Stein method
(with or withoutcouplings) is undoubtedly the most widely used and the most fruitful one. It is readily
amended for dealing with dependent situations, but leads usually to less precise bounds for numerical pur-
poses. On the other hand, direct or indirect classicalFourier analysis, although involving less probability
ingredient and relying on more explicit forms of generatingfunctions, often gives better numerical bounds.
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For these and other approaches (includingsemigroupwith Fourier analysis,information-theoretic), see
Deheuvels and Pfeifer [28], Stein [78], Aldous (1989), Barbour et al. [9], Steele [81], Janson [46], Roos
[69, 70], Kontoyiannis et al. [51] and the references therein.

1.2 Our new approach

The new approach we are developing in this paper starts from the integral representation for a given
sequence{An}n>0 (satisfying certain conditions specified in the next section)

∑

n>0

∣

∣

∣

∣

∣

An

e−λ λ
n

n!

∣

∣

∣

∣

∣

2

e−λ
λn

n!
=

∫ ∞

0

e−rI(
√

r/λ) dr, (1.2)

whereλ > 0 and

I(r) :=
1

2π

∫ π

−π

∣

∣

∣

∣

∣

e−λre
it
∑

j>0

Aj(1 + reit)j

∣

∣

∣

∣

∣

2

dt.

Note thatI(r) =
∑

n>0 |an|2r2n, wherean denotes the coefficient ofzn in the Taylor expansion of
e−λz

∑

j>0Aj(1 + z)j . This means that (1.2) can be written in the form

∑

n>0

|An|2
e−λ λ

n

n!

=
∑

n>0

|an|2
n!

λn
,

which, as far as we are aware, already appeared in the paper Pollaczek-Geiringer [62], but no further use
of it has been discussed; see also Jacob [45], Schmidt [73], Siegmund-Schultze [77] and the references
cited there. Also the series on the right-hand side is in almost all cases we are considering less useful than
the integral in1.2.

The seemingly strange and complicated starting point (1.2) turns out to be very useful for develop-
ing effective tools for most Poisson approximation problems. Other ingredients required are surprisingly
simple, with very little use of complex analysis. A typical result is of the form

dTV (L (Sn),P(λ)) 6
(
√
e− 1)θ√

2(1− θ)3/2
,

where(
√
e − 1)/

√
2 ≈ 0.46; see Theorem3.4. The relation (1.2), which will be proved below, is based

on the orthogonality of Charlier polynomials and Parseval identity; thus we call itthe Charlier-Parseval
identity.

Other features of our approach are: first, it reduces the estimate of the probability distances to that
of certain integral representations with a similar form to the right-hand side of (1.2), and thus being of
certain Tauberian character; second, it can be readily extended to derive asymptotic expansions; third, the
use of the correspondence between Charlier polynomials andPoisson distribution can be quickly amended
for other families of orthogonal polynomials and their corresponding probability distributions; fourth, the
same idea used applies equally well to the de-Poissonization procedure, and leads to some interesting new
results, details being discussed elsewhere.

Organization of the paper. This paper is organized as follows. We begin with the development of our
approach in the next section. Then except for Section6, which is focusing on reviewing and comparing
with known results, the next three sections consist of applications of our Charlier-Parseval approach: Sec-
tion 3 to several distances of Poisson approximation toSn for largeλ, Section4 to second order estimates,
Section5 to approximations by signed measures.
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2 The new Charlier-Parseval approach

Crucial to the development our approach is the use of Charlier polynomials, so we first derive a few
properties of Charlier polynomials we will need.

2.1 Definition and basic properties of Charlier polynomials

The Charlier polynomialsCk(λ, n) are defined by

∑

n>0

Ck(λ, n)
λn

n!
zn = (z − 1)keλz (k = 0, 1, . . . ). (2.1)

Multiplying both sides byz − 1, we see that

λn−1

(n− 1)!
Ck(λ, n− 1)− λn

n!
Ck(λ, n) =

λn

n!
Ck+1(λ, n), (2.2)

which implies that the Charlier polynomialsϕk(n) := Ck(λ, n) are solutions to the system of difference
equationsxϕk(x− 1)− λϕk(x) = λϕk+1(x), with the initial conditionϕ0(x) ≡ 1. In particular,

C1(λ, n) =
n− λ

λ
and C2(λ, n) =

n2 − (2λ+ 1)n+ λ2

λ2
. (2.3)

An alternative expression forCk(λ, n) is given by

λn

n!
Ck(λ, n) = eλ

dk

dλk
e−λ

λn

n!
,

which follows from substituting the relation(z − 1)keλz = eλ(dk/dλk) eλ(z−1) into (2.1).
Since by (2.1)

Ck(λ, n)
λn

n!
= [zn](z − 1)keλz, (2.4)

where[zn]φ(z) denotes the coefficient ofzn in the Taylor expansion ofφ(z), we have, for each fixedn,

λn

n!

∑

k>0

λk

k!
Ck(λ, n)w

k = [zn]
∑

k>0

λk

k!
wk(z − 1)keλz

= [zn]e−λw+zλ(w+1)

=
λn

n!
(1 + w)me−λw.

It follows that
∑

n>0

Cn(λ, k)
λn

n!
wn = (1 + w)ke−λw.

Comparing this relation with (2.1), we obtain the propertyCk(λ, n) = (−1)n+kCn(λ, k), for all k, n > 0.
Another important property we will need is the following orthogonality relation (see [79, p. 35]).
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Lemma 2.1. The Charlier polynomials are orthogonal with respect to thePoisson measuree−λλn/n!,
namely,

∑

n>0

Ck(λ, n)Cℓ(λ, n)e
−λλ

n

n!
= δk,ℓ

k!

λk
, (2.5)

whereδa,b denotes the Kronecker symbol.

For self-containedness and in view of the importance of thisorthogonality relation to our analysis
below, we give here a proof similar to the original one by Jordan [47].

Proof. We start from the expansion

Ck(λ, n) =
∑

06j6k

(

k

j

)

(−1)k−j
n(n− 1) · · · (n− j + 1)

λj
, (2.6)

which follows directly from (2.4). Differentiating both sides of (2.1) j times with respect toz and substi-
tutingz = 1, we get

∑

n>0

e−λ
λn

n!
Ck(λ, n)n(n− 1) · · · (n− j + 1) =

{

j! if j = k;

0 if j < k,

which means that the Charlier polynomialsCk(λ, x) are orthogonal to any falling factorials of the form
x(x − 1) · · · (x − j + 1) with j < k with respect to the Poisson measure. Now without loss of generality,
we may assume thatℓ 6 k. Then applying (2.6), we get

∑

n>0

e−λ
λn

n!
Ck(λ, n)Cℓ(λ, n) =

∑

06j6ℓ

(

ℓ

j

)

(−1)ℓ−jλ−j
∑

n>0

e−λ
λn

n!
Ck(λ, n)n(n− 1) · · · (n− j + 1)

=
∑

06j6ℓ

(

ℓ

j

)

(−1)ℓ−jλ−jδk,jk!

= δk,ℓ
k!

λk
.

This completes the proof.

2.2 The Charlier-Parseval identity

Assume that we have a generating function

F (z) =
∑

n>0

Anz
n,

which can be written in the form

F (z) = eλ(z−1)f(z). (2.7)

Let
f(z) =

∑

j>0

aj(z − 1)j.

6



Then, by (2.4), we haveformally the Charlier-Jordan expansion

An = e−λ
λn

n!

∑

j>0

ajCj(λ, n), (2.8)

and we expect thatAn will be close toe−λλn/n! if f(z) is close to1, or, alternatively, ifa0 is close to1 and
all otheraj ’s are close to0. The following identity provides our first step in quantifying such a heuristic.

Proposition 2.2(Charlier-Parseval identity). Assume thatf(z) is analytic in the whole complex plane and
satisfies

|f(z)| = O
(

eH|z−1|2
)

, (2.9)

as |z| → ∞. Then for anyλ > 2H

∑

n>0

∣

∣

∣

∣

∣

An

e−λ λ
n

n!

∣

∣

∣

∣

∣

2

e−λ
λn

n!
=

∫ ∞

0

I(
√

r/λ)e−r dr, (2.10)

where

I(r) :=
1

2π

∫ π

−π

|f(1 + reit)|2 dt. (2.11)

Proof. Since by definitionI(r) =
∑

j>0 |aj|2r2j and the condition (2.9) implies the convergence of the
series

∑

j>0 |aj|2j!/λj, it follows that
∫ ∞

0

I
(

√

r/λ
)

e−r dr =
∑

j>0

|aj|2
j!

λj
. (2.12)

Both the series and the integral are convergent because, by (2.9), I(r) = O(e2Hr
2

).
Again by definition

∑

n>0

Anz
n = eλ(z−1)

∑

j>0

aj(z − 1)j.

Taking coefficient ofzn on both sides, we obtain (2.8), which can be written as

An

e−λ λ
n

n!

=
∑

j>0

ajCj(λ, n),

where the convergence of the above series is pointwise. But the convergence of the series in (2.12) implies
that the series on the right side also converges inL2-norm with respect to the Poisson measuree−λλn/n!.
Thus the Proposition follows from (2.5).

In the special cases whenF (z) = (z − 1)keλ(z−1), orAn = Ck(λ, n)e
−λλn/n!, we have the identity

∑

n>0

e−λ
λn

n!
|Ck(λ, n)|2 = k!λ−k (k = 0, 1, . . . ),

which is nothing but (2.5) with k = ℓ. This implies that

∑

n>0

e−λ
λn

n!
|Ck(λ, n)| 6

√
k!λ−k/2 (k = 0, 1, . . . ). (2.13)
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2.3 A probabilistic interpretation of the Charlier-Parseval identity

Assume thatF (z) is a probability generating function of some non-negative integer valued random variable
X having the form

F (z) :=
∑

m>0

P(X = m)zm = eλ(z−1)
∑

j>0

aj(z − 1)j.

Applying the Charlier-Parseval identity (2.10) and (2.12) to F gives

∑

m>0

∣

∣

∣

∣

∣

P(X = m)

e−λ λ
m

m!

− 1

∣

∣

∣

∣

∣

2

e−λ
λm

m!
=
∑

j>1

j!

λj
|aj|2,

provided that both series converge. In view of the orthogonality relations (2.5), the coefficientsaj can be
expressed as

aj =
λj

j!

∑

m>0

P(X = m)Cj(λ,m) =
λj

j!
ECj(λ,X).

Thus
∑

m>0

∣

∣

∣

∣

∣

P(X = m)

e−λ λ
m

m!

− 1

∣

∣

∣

∣

∣

2

e−λ
λm

m!
=
∑

j>1

λj

j!

∣

∣ECj(λ,X)
∣

∣

2
.

This identity relates the closeness ofX to Poisson measure by means of the moments ofX since the
quantityECj(λ,X) is a linear combination of the moments ofX.

On the other hand, it is also clear, by Cauchy-Schwarz inequality, that the series on the right-hand side
satisfies

∑

j>1

λj

j!

∣

∣ECj(λ,X)
∣

∣

2
= sup

(

E
∑

j>1 ajCj(λ,X)
)2

∑

j>1 a
2
jj!/λ

j
,

where the supremum is taken over all real sequences{aj}j>1 such that
∑

j>1 a
2
jj!/λ

j <∞. Let

g(x) :=
∑

j>1

ajCj(λ, x).

Then

sup

(

E
∑

j>1 ajCj(λ,X)
)2

∑

j>1 a
2
jj!/λ

j
= sup

Eg(ζ)=0

(

Eg(X)
)2

Eg(ζ)2
,

whereζ is a Poisson random variable with meanλ.
Applying the difference equation (2.2) for Charlier polynomials and taking into account thata0 =

Eg(X) = 0. we then have

g(X) =
1

λ

∑

j>1

ajE
(

XCj−1(λ,X − 1)− λCj−1(λ,X)
)

=
1

λ

(

Xh(X − 1)− λh(X)
)

,

whereh(x) =
∑

j>1 akCj−1(λ, x). Thus we can write

(

∑

m>0

∣

∣

∣

∣

∣

P(X = m)

e−λ λ
m

m!

− 1

∣

∣

∣

∣

∣

2

e−λ
λm

m!

)1/2

= supE
(

Xh(X − 1)− λh(X)
)

,

8



the supremum being taken over all functionsh such thatE
(

ζh(ζ − 1) − λh(ζ)
)2

= 1. The right-hand
side of the last expression is reminiscent of the Chen-Steinequation; see the book [9]; see also Goldstein
and Reinert [36] and the references therein for the connection between orthogonal polynomials and Stein’s
method.

2.4 Asymptotic forms of the Charlier-Parseval identity

The identity (2.10) can be readily extended to the following effective (or asymptotic) versions for largeλ.

Proposition 2.3 (Asymptotic forms of the Charlier-Parseval identity). Let F (z) and f(z) be defined as
above. Assume thatf is an entire function and satisfies the condition

|f(z)| 6 KeH|z−1|2, (2.14)

for all z ∈ C, with some positive constantsK andH. Then uniformly for allN > 0 andλ > (2 + ε)H
with ε > 0

∑

n>0

∣

∣

∣

∣

∣

An

e−λ λ
n

n!

−
∑

06j6N

ajCj(λ, n)

∣

∣

∣

∣

∣

2

e−λ
λn

n!
6 K22 + ε

ε

(

(2 + ε)H

λ

)N+1

, (2.15)

∑

n>0

∣

∣

∣

∣

∣

An − e−λ
λn

n!

∑

06j6N

ajCj(λ, n)

∣

∣

∣

∣

∣

6 K

√

2 + ε

ε

(

(2 + ε)H

λ

)(N+1)/2

, (2.16)

and uniformly for alln > 0
∣

∣

∣

∣

∣

An − e−λ
λn

n!

(

∑

06j6N

ajCj(λ, n)

)∣

∣

∣

∣

∣

6 K
2 + ε

ε
· 1√

λ

(

(2 + ε)H

λ

)(N+1)/2

. (2.17)

Proof. Applying (2.10) with λ = (2+ε)H and using the upper boundI(r) 6 K2e2Hr
2

(by (2.14)), we get

∑

j>0

|aj|2j!
(

(2 + ε)H
)j =

∫ ∞

0

I

(
√

r

(2 + ε)H

)

e−r dr

6 K2

∫ ∞

0

e−r(1−2/(2+ε)) dr

= K2 2 + ε

ε
.

Applying again Proposition2.2but to the functionf(z) = g(z)−
∑

06j6N aj(z− 1)j and using the above
estimate forλ > (2 + ε)H, we get

∑

n>0

∣

∣

∣

∣

∣

An

e−λ λ
n

n!

−
∑

06j6N

ajCj(λ, n)

∣

∣

∣

∣

∣

2

e−λ
λn

n!
=
∑

j>N

|aj |2
j!

λj

6
1

λN+1

∑

j>N

|aj|2j!
(

(2 + ε)H
)j−(N+1)

=

(

(2 + ε)H
)N+1

λN+1

∑

j>N

|aj|2j!
(

(2 + ε)H
)j

6 K22 + ε

ε

(

(2 + ε)H

λ

)N+1

.
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Thus (2.15) follows and the estimate (2.16) is an immediate consequence of Cauchy-Schwarz inequality.
For (2.17), we apply Proposition2.2to the function

(1− z)

(

f(z)−
∑

06j6N

aj(z − 1)j

)

,

and obtain
∑

n>0

∣

∣

∣

∣

∣

An − An−1

e−λ λ
n

n!

−
∑

06j6N

ajCj+1(λ, n)

∣

∣

∣

∣

∣

2

e−λ
λn

n!
=
∑

j>N

|aj|2(j + 1)!

λj+1
.

By partial summation, (2.2) and Cauchy-Schwarz inequality
∣

∣

∣

∣

∣

An − e−λ
λn

n!

(

∑

06j6N

ajCj(λ, n)

)∣

∣

∣

∣

∣

6
∑

06m6n

∣

∣

∣

∣

∣

Am −Am−1 − e−λ
λm

m!

(

∑

06j6N

ajCj+1(λ,m)

)∣

∣

∣

∣

∣

6





∑

m>0

∣

∣

∣

∣

∣

Am − Am−1

e−λ λ
m

m!

−
∑

06j6N

ajCj+1(λ, n)

∣

∣

∣

∣

∣

2

e−λ
λm

m!





1/2

=

(

∑

j>N

|aj|2(j + 1)!

λj+1

)1/2

. (2.18)

Now for λ > (2 + ε)H

∑

n>0

|an|2(n + 1)!

λN+1
=

1

λ

∫ ∞

0

I
(

√

r/λ
)

re−r dr

6
K2

λ

∫ ∞

0

e−r(1−2H/λ)r dr

=
K2

λ(1− 2H/λ)2
.

Thus (2.17) follows from substituting this bound into (2.18).

2.5 Some useful estimates of Tauberian type

We now derive a few other effective bounds for certain partial sums or series by applying the Charlier-
Parseval bounds we derived above; these bounds are more suitable for use for the diverse Poisson approxi-
mation distances we will consider. They are the types of results that have more or less the flavor of typical
Tauberian theorems.

Assume thatζλ is a Poisson(λ) distribution. Denote by

Z(n) = min {P(ζλ 6 n),P(ζλ > n)} .

It is clear thatZ(n) 6 1/2.
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Proposition 2.4. Let F, f, An, an and I be defined as in (2.7) and (2.11). Assume thatf(z) is an entire
function and satisfies the condition (2.9). Then forλ > 2H the following inequalities hold. Forn > 0,

∑

n>0

|An| 6
(
∫ ∞

0

I(
√

r/λ)e−r dr

)1/2

, (2.19)

|An| 6
1√
λ

(
∫ ∞

0

I(
√

r/λ)re−r dr

)1/2
√

Z(n). (2.20)

If we additionally assume thatF (1) = 0, then forn > 0,

∑

n>0

|A0 + A1 + · · ·+ An| 6
√
λ

(
∫ ∞

0

I(
√

r/λ)r−1e−r dr

)1/2

, (2.21)

|A0 + A1 + · · ·+ An| 6
(
∫ ∞

0

I(
√

r/λ)e−r dr

)1/2
√

Z(n). (2.22)

Proof. By Cauchy-Schwarz inequality

∑

n>0

|An| =
∑

n>0

|An|
e−λ λ

n

n!

(

e−λ
λn

n!

)1/2(

e−λ
λn

n!

)1/2

6





∑

n>0

∣

∣

∣

∣

∣

An

e−λ λ
n

n!

∣

∣

∣

∣

∣

2

e−λ
λn

n!





1/2

.

The upper bound (2.19) then follows from (2.10).
The third inequality (2.21) is proved by applying (2.19) to the functionF1(z) := F (z)/(1 − z). Note

that the conditionF (1) = 0 implies thatF1(z) is regular atz = 1. With thisF1, (2.19) now has the form

∑

n>0

|A0 + A1 + · · ·+ An| 6
(
∫ ∞

0

I1(
√

r/λ)e−r dr

)1/2

,

where

I1(r) =
1

2πr2

∫ π

−π

|f(1 + reit)|2 dt = I(r)/r2,

and (2.21) follows.
For the fourth inequality (2.22), we start from applying the Cauchy-Schwarz inequality, giving

|A0 + A1 + · · ·+ An| 6





∑

j>0

∣

∣

∣

∣

∣

Aj

e−λ λ
j

j!

∣

∣

∣

∣

∣

2

e−λ
λj

j!





1/2
(

∑

06j6n

e−λ
λj

j!

)1/2

. (2.23)

On the other hand, the conditionF (1) = 0 implies that
∑

j>0Aj = 0. Consequently,

|A0 + A1 + · · ·+ An| = |An+1 + An+2 + · · · |

6





∑

j>0

∣

∣

∣

∣

∣

Aj

e−λ λ
j

j!

∣

∣

∣

∣

∣

2

e−λ
λj

j!





1/2
(

∑

j>n

e−λ
λj

j!

)1/2

. (2.24)

Taking the minimum of the two upper bounds (2.23) and (2.24), we obtain (2.22).
Finally, the second inequality (2.20) follows from (2.22) by applying it to the generating function

(1− z)F (z) instead ofF (z).
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3 Applications. I. Distances for Poisson approximation

We apply in this section the diverse tools based on the Charlier-Parseval identity and derive bounds for the
closeness between the Poisson-binomial distribution and aPoisson distribution with the same mean. We
need a few simple inequalities.

3.1 Lemmas

Lemma 3.1. The inequalities

|(1 + z)e−z| 6 e|z|
2/2 (3.1)

∣

∣

∣

∣

∣

(1 + z)e−z +
∑

06j6m

j − 1

j!
(−z)j

∣

∣

∣

∣

∣

6 cm|z|m+1e|z|
2/2, (3.2)

hold for all z ∈ C, wherem > 1 and

cm :=
1

m!

∫ 1

0

et
2/2(1− t)m−1(m− 1 + t)dt. (3.3)

Proof. Write z = reit, wherer > 0 andt ∈ R. Then, by1 + x 6 ex for x ∈ R,

|(1 + z)e−z| =
√
1 + 2r cos t+ r2 e−r cos t

6 er cos t+r
2/2−r cos t

= er
2/2.

For (3.2), we start with the relation

ez −
∑

j<m

zj

j!
=

zm

(m− 1)!

∫ 1

0

etz(1− t)m−1dt,

and deduce that

(1− z)ez +
∑

06j6m

j − 1

j!
zj = −z

m+1

m!

∫ 1

0

etz(1− t)m−1(m− 1 + t)dt,

for m > 1. Thus (3.2) follows from the inequality|tz| 6 |z|2/2 + t2/2.

Remark3.2. Note that in the proof of (3.2), we have the inequality

1 + (x− 1)ex

x2ex2/2
6 c1 =

√
e− 1 = 0.64872 . . . (x ∈ R),

which can easily be sharpened, by elementary calculus, to

1 + (x− 1)ex

x2ex2/2
6 0.63236 . . . .

But this improvement overc1 is marginal, so we retain the simpler upper boundc1 in the following use.

The next lemma is crucial in applying our Charlier-Parsevalbounds derived above.
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Lemma 3.3. The inequality
∣

∣

∣

∣

∣

∏

16k6n

(1 + vk)e
−vk − 1

∣

∣

∣

∣

∣

6 c1V2e
V2/2, (3.4)

holds for any complex numbers{vk}, where

Vm :=
∑

16k6n

|vk|m. (3.5)

Proof. By partial summation

∏

16k6n

ξk −
∏

16k6n

ηk =
∑

16k6n

(ξk − ηk)

(

∏

16j<k

ξj

)(

∏

k<j6n

ηj

)

, (3.6)

for nonzero{ξk} and{ηk}. Applying this formula, we get

∏

16k6n

(1 + vk)e
−vk − 1 =

∑

16k6n

(

(1 + vk)e
−vk − 1

)

∏

16j<k

(1 + vj)e
−vj .

By the two inequalities (3.1) and (3.2) with m = 1, we then obtain
∣

∣

∣

∣

∣

∏

16k6n

(1 + vk)e
−vk − 1

∣

∣

∣

∣

∣

6 c1
∑

16k6n

|vk|2
∏

16j<k

e|vj |
2/2,

and (3.4) follows.

3.2 New results

We are ready to apply in this section the tools we developed above to derive bounds for several Poisson
approximation distances.

Let
Sn := X1 +X2 + · · ·+Xn,

where theXj ’s are independent Bernoulli random variables with

P(Xj = 1) = 1− P(Xj = 0) = pj (1 6 j 6 n).

Then,here and throughout this section,

F (z) :=
∑

06m6n

P(Sn = m)zm =
∏

16j6n

(qj + pjz), (3.7)

whereqj := 1− pj . Defineλm :=
∑

16j6n p
m
j , λ = λ1 andθ := λ2/λ1.

Let P(λ) denote a Poisson distribution with meanλ.

Theorem 3.4.We have the following estimates:(i) for theχ2-distance

dχ2(L (Sn),P(λ)) :=
∑

m>0

∣

∣

∣

∣

∣

P(Sn = m)

e−λ λ
m

m!

− 1

∣

∣

∣

∣

∣

2

e−λ
λm

m!
6

2c21θ
2

(1− θ)3
;

13



(ii ) for the total variation distance

dTV (L (Sn),P(λ)) :=
1

2

∑

m>0

∣

∣

∣

∣

P(Sn = m)− e−λ
λm

m!

∣

∣

∣

∣

6
c1θ√

2(1− θ)3/2
;

and(iii ) for the Wasserstein (or Fortet-Mourier) distance

dW (L (Sn),P(λ)) :=
∑

m>0

∣

∣

∣

∣

∣

P(Sn 6 m)−
∑

j6m

e−λ
λj

j!

∣

∣

∣

∣

∣

6
c1λ2√
λ(1− θ)

.

We also have the following non-uniform bounds form > 0: (iv) for the Kolmogorov distance
∣

∣

∣

∣

∣

P(Sn 6 m)−
∑

j6m

e−λ
λj

j!

∣

∣

∣

∣

∣

6

√
2c1θ

(1− θ)3/2

√

Z(m);

and(v) for the point metric
∣

∣

∣

∣

P(Sn = m)− e−λ
λm

m!

∣

∣

∣

∣

6

√
6c1θ

(1− θ)2
√
λ

√

Z(m).

Proof. For (i), we apply (2.10) to the functionF (z)− eλ(z−1) and use the inequality (3.4) with vj = pjre
it

to estimate the integralI. This yields

I(r) =
1

2π

∫ π

−π

∣

∣

∣

∣

∣

∏

16j6n

(1 + pjre
it)e−pjre

it − 1

∣

∣

∣

∣

∣

2

dt

6 c21λ
2
2r

4eλ2r
2

(3.8)

hence
∫ ∞

0

I(
√

r/λ)e−r dr 6 c21θ
2

∫ ∞

0

r2e−r(1−θ) dr

=
2c21θ

2

(1− θ)3
,

and the estimate in(i) for theχ2-distance follows.
Similarly, the inequalities in(ii ) and in(iv) follow from substituting the estimate (3.8) into the two

inequalities (2.19) and (2.22) respectively.
As to the non-uniform estimate in(v) for the point metric, we have, again, by (3.8),

∫ ∞

0

I(
√

r/λ)re−r dr 6 c21θ
2

∫ ∞

0

r3e−r(1−θ) dr

6
6c21θ

2

(1− θ)4
.

Substituting this estimate in (2.20) gives the inequality in(v).
Finally, the upper bound in(iii ) for dW is derived similarly by the inequality (2.21) using again (3.8)

∫ ∞

0

r−1e−rI(
√

r/λ) dr 6
c21θ

2

(1− θ)2
.

This completes the proof of the theorem.
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The reason of studying theχ2-distance (also referred to as the quadratic divergence) isat least twofold
in addition to its applications in real problems. First, it is structurally simpler than most other distances
because it satisfies the following identity.

Corollary 3.5. Let {aj} be given by

F (z)− eλ(z−1) = eλ(z−1)
∑

j>2

aj(z − 1)j, (3.9)

whereF is given in (3.7). Then theχ2-distance satisfies the identity

dχ2(L (Sn),P(λ)) =
∑

j>2

j!

λj
|aj|2. (3.10)

Proof. By (3.9), we have

P(Sn = m)− e−λ
λm

m!
= e−λ

λm

m!

∑

j>2

ajCj(λ,m). (3.11)

Then (3.10) follows from (2.12).

Second, theχ2-distance is often used to provide bounds for other distances; see [14]. An example is as
follows.

Corollary 3.6. The information divergence (or the Kullback-Leibner divergence) satisfies

dKL(L (Sn),P(λ)) :=
∑

m>0

P(Sn = m) log

(

P(Sn = m)

e−λ λ
m

m!

)

6
2c21θ

2

(1− θ)3
. (3.12)

Proof. Given two sequences of non-negative real numbersxj andyj such that

x0 + x1 + · · · = 1 and y0 + y1 + · · · = 1.

By the elementary inequalitylog x 6 x− 1, we obtain

∑

n>0

yn log
yn
xn

6
∑

n>0

yn

(

yn
xn

− 1

)

=
∑

n>0

y2n
xn

− 1 =
∑

n>0

xn

(

yn
xn

− 1

)2

.

ThusdKL 6 dχ2. Now (3.12) follows from applying this inequality withxm = e−λλm/m! andym =
P(Sn = m) and then using the inequality in(i) of Theorem3.4.

SinceZ(m) 6 1/2, from the two non-uniform estimates(iv) and(v) of Theorem3.4, we easily obtain
that the Kolmogorov distance satisfies

dK(L (Sn),P(λ)) := sup
m

∣

∣

∣

∣

∣

P(Sn 6 m)− e−λ
∑

06j6m

λj

j!

∣

∣

∣

∣

∣

6
c1θ

(1− θ)3/2
;

and the point metric is bounded above by

dP (L (Sn),P(λ)) := sup
m

∣

∣

∣

∣

P(Sn = m)− e−λ
λm

m!

∣

∣

∣

∣

6

√
3c1θ√

λ (1− θ)2
.

Note that the estimate so obtained for the Kolmogorov distance is worse than that obtained by the simple
relationdK 6 dTV and the estimate(ii ) of Theorem3.4.

The quantityZ(m) can be readily bounded above by the following estimate; see also [9, p. 259] or
[44].
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Lemma 3.7.
Z(m) 6 e−(m−λ)2/(2(m+λ)).

Proof. Let r = m/λ. If m > λ, then

Z(m) 6 P(ζλ > m) 6 r−meλ(r−1) = e−λψ(m/λ),

whereψ(x) := 1− x+ x log x. We now prove that

ψ(x) >
(1− x)2

2(1 + x)
(x > 0), (3.13)

or, equivalently,
∫ x

0

log(1 + t)dt >
x2

2(2 + x)
(x > −1).

To prove (3.13), observe first thatlog(1 + t) > t/(1 + t) for t > −1 since
∫ t

0
log(1 + v)dv > 0. Then

∫ x

0

log(1 + t)dt >

∫ x

0

t

1 + t
dt,

which is bounded below byx2/(2(2 + x)) by considering the two casesx > 0 andx ∈ (−1, 0]. Thus, by
(3.13),

Z(m) 6 e−(m−λ)2/(2(m+λ)).

Similarly, if m 6 λ, thenr < 1, and

Z(m) 6 P (ξλ 6 m) 6 r−meλ(r−1) = e−λψ(m/λ) 6 e−(m−λ)2/(2(m+λ)).

4 Applications. II. Second-order estimates

We show in this section that the same approach we developed above can be readily extended for obtaining
higher order estimates. For simplicity, we consider only the second-order estimates for which we need
only to refine Lemma3.3. From the formal expansion (3.11), we expect that

P(Sn = m)− e−λ
λm

m!
≈ a2e

−λλ
m

m!
C2(λ,m) + smaller order terms,

wherea2 = −λ2/2, and the error terms for Poisson approximation would be smaller if we take the term
a2e

−λλmC2(λ,m)/m! into account.

Lemma 4.1. For any complex numbers{vk}, the following inequality holds
∣

∣

∣

∣

∣

∏

16k6n

(1 + vk)e
−vk − 1 +

1

2

∑

16k6n

v2k

∣

∣

∣

∣

∣

6

(c1
4
V 2
2 + c2V3

)

eV2/2, (4.1)

whereVm is defined in (3.5), c1 =
√
e− 1 and (see (3.3))

c2 =
1

2

∫ 1

0

et
2/2(1− t2)dt ≈ 0.3706.
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Proof. By (3.6),

∏

16k6n

(1 + vk)e
−vk − 1 +

1

2

∑

16k6n

v2k =
∑

16k6n

(

(1 + vk)e
−vk − 1 +

v2k
2

)

∏

16j<k

(1 + vj)e
−vj

− 1

2

∑

16k6n

v2k

(

∏

16j<k

(1 + vk)e
−vk − 1

)

.

By (3.1), (3.2) with m = 2 and (3.4), we then obtain
∣

∣

∣

∣

∣

∏

16k6n

(1 + vk)e
−vk − 1 +

1

2

∑

16k6n

v2k

∣

∣

∣

∣

∣

6 c2
∑

16k6n

|vk|3 exp
(

1

2

∑

16j6k

|vj|2
)

+
c1
2

∑

16k6n

|vk|2
∑

j<k

|vj|2 exp
(

1

2

∑

16j<k

|vj |2
)

,

and (4.1) follows.

For simplicity, let

P1(z) := eλ(z−1)

(

1− λ2
2
(z − 1)2

)

.

Then

[zm]P1(z) = e−λ
λm

m!

(

1− λ2
2
C2(m, λ)

)

, (4.2)

[zm]
P1(z)

1− z
=
∑

j6m

e−λ
λj

j!
+
λ2
2
C1(m, λ)e

−λλ
m

m!
,

whereC1, C2 are given in (2.3).
With the inequality (4.1) and Proposition2.4, we can now refine Theorem3.4as follows.

Theorem 4.2. For θ < 1, we have the following second-order estimates forχ2-, total variation and
Wasserstein distances, respectively,

∑

m>0

(P(Sn = m)− [zm]P1(z))
2

e−λ λ
m

m!

6

( √
3 c1θ

2

√
2(1− θ)5/2

+

√
6 c2λ3

λ3/2(1− θ)2

)2

,

1

2

∑

m>0

|P(Sn = m)− [zm]P1(z)| 6
√
3 c1θ

2

2
√
2(1− θ)5/2

+

√
3 c2λ3√

2λ3/2(1− θ)2
,

∑

m>0

∣

∣

∣

∣

P(Sn 6 m)− [zm]
P1(z)

1− z

∣

∣

∣

∣

6
√
λ

( √
3c1θ

2

2
√
2(1− θ)2

+

√
2 c2λ3

λ3/2(1− θ)3/2

)

;

and the second-order non-uniform estimates for Kolmogorovdistance and point metric, respectively,
∣

∣

∣

∣

P(Sn 6 m)− [zm]
P1(z)

1− z

∣

∣

∣

∣

6
√

Z(m)

( √
3 c1θ

2

√
2(1− θ)5/2

+

√
6 c2λ3

λ3/2(1− θ)2

)

,

|P(Sn = m)− [zm]P1(z)| 6
√

Z(m)

λ

( √
15 c1θ

2

√
2(1− θ)3

+
2
√
6 c2λ3

λ3/2(1− θ)5/2

)

.
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Proof. Let

F (z) =
∏

16j6n

(1 + pj(z − 1))− eλ(z−1)

(

1− λ2
2
(z − 1)2

)

.

Takevj = pj(z − 1) in inequality (4.1). Then
∣

∣

∣

∣

∣

∏

16j6n

(1 + pj(z − 1))e−pj(z−1) − 1− λ2
2
(z − 1)2

∣

∣

∣

∣

∣

6

(c1
4
λ22|z − 1|4 + c2λ3|z − 1|3

)

e
λ2
2
|z−1|2.

It follows that

I(r) 6
(c1
4
λ22r

4 + c2λ3r
3
)2

eλ2r
2

. (4.3)

Substituting this upper bound into the identity (2.10) and using the relation (4.2), we obtain
(

∑

m>0

(P(Sn = m)− [zm]P1(z))
2

e−λ λ
m

m!

)1/2

6

(

∫ ∞

0

(

c1
4
θ2r2 +

c2λ3
λ3/2

r3/2
)2

e−(1−θ)r dr

)1/2

6
c1
4
θ2
(
∫ ∞

0

r4e−(1−θ)r dr

)1/2

+
c2λ3
λ3/2

(
∫ ∞

0

r3e−(1−θ)r dr

)1/2

=
c1
4
θ2 ·

√
24

(1− θ)5/2
+
c2λ3
λ3/2

·
√
6

(1− θ)2
,

where we used the Minkowsky inequality. This proves the second-order estimate for theχ2-distance.
Similarly, the corresponding estimates for the total variation distance and the (non-uniform estimate of

the) Kolmogorov distance follow from (4.3) and the two inequalities (2.19) and (2.22), respectively.
For the point metric, we have, using again (4.3) and the inequality (2.20),

√

λ

Z(m)
|P(Sn = m)− [zm]P1(z)|

6

(

∫ ∞

0

(

c1
4
θ2r2 +

c2λ3
λ3/2

r3/2
)2

re−(1−θ)r dr

)1/2

6
c1
4
θ2
(
∫ ∞

0

r5e−(1−θ)r dr

)1/2

+
c2λ3
λ3/2

(
∫ ∞

0

r4e−(1−θ)r dr

)1/2

=

√
15 c1θ

2

√
2(1− θ)3

+
2
√
6 c2λ3

λ3/2(1− θ)5/2
.

Finally, the second-order estimate for the Wasserstein distance follows from (4.3) and the inequality (2.21)

λ−1/2
∑

m>0

∣

∣

∣

∣

P(Sn 6 m)− [zm]
P1(z)

1− z

∣

∣

∣

∣

6

(

∫ ∞

0

(

c1
4
θ2r2 +

c2λ3
λ3/2

r3/2
)2

r−1e−(1−θ)r dr

)1/2

6
c1
4
θ2
(
∫ ∞

0

r3e−(1−θ)r dr

)1/2

+
c2λ3
λ3/2

(
∫ ∞

0

r2e−(1−θ)r dr

)1/2

.
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Corollary 4.3. The total variation distance between the distribution ofSn and a Poisson distribution of
meanλ satisfies, forθ < 1,

dTV (Sn,P(λ)) 6
θ

23/2
+

√
3 c1θ

2

2
√
2(1− θ)5/2

+

√
3 c2λ3√

2λ3/2(1− θ)2
. (4.4)

Proof. By (2.13) with k = 2, we have

1

2

∑

m>0

e−λ
λm

m!
|C2(λ,m)| 6 1√

2λ
,

and (4.4) follows from the second-order estimate for the total variation distance in Theorem4.2.

Remark4.4. One can easily derive, by the difference equation (2.2) of Charlier polynomials withk = 1,
that (see for example [43])

1

2

∑

m>0

e−λ
λm

m!
|C2(λ,m)| = e−λ

(

λm+−1

m+!
(m+ − λ) +

λm−−1

m−!
(λ−m−)

)

,

wherem± := ⌊λ + 1
2
±
√

λ+ 1
4
⌋. Asymptotically, for largeλ,

1

2

∑

m>0

e−λ
λm

m!
|C2(λ,m)| =

√
2√

πe λ

(

1 +O
(

λ−1
))

.

By a detailed calculus, Roos [70] showed that

1

2

∑

m>0

e−λ
λm

m!
|C2(λ,m)| 6 3

2eλ
, (4.5)

where numerically
{

1√
2
,
3

2e
,

√
2√
πe

}

≈ {0.707, 0.552, 0.484} .

Of course, we can apply Roos’s inequality (4.5) and replace the constant1/23/2 ≈ 0.354 . . . by 3/(4e) ≈
0.276 . . . in the first term of our inequality (4.4).

Corollary 4.5. Theχ2-distance satisfies

dχ2(L (Sn),P(λ)) =
θ2

2

(

1 +O

(

θ

(1− θ)5

))

. (4.6)

Proof. Note that

0 6
∑

m>0

(P(Sn = m)− [zm]P1(z))
2

e−λ λ
m

m!

=
∑

m>0

(

P(Sn = m)− e−λ λ
m

m!

)2

e−λ λ
m

m!

− θ2

2
.

This identity together with the first estimate of Theorem4.2 and an observation thatλ3 6 λ
3/2
2 yields

(4.6).
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Remark4.6. An alternative way to prove (4.6) is to use the identity (3.10) and apply the estimate for the
coefficientsaj derived in Shorgin [80]

|aj| 6
(

eλ2
j

)j/2

(j > 2), (4.7)

and obtain

∑

j>3

j!

λj
|aj |2 6

∑

j>3

j!(e/j)jθj = O

(

∑

j>3

j1/2θj

)

,

by Stirling’s formulaj! = O(j1/2(j/e)j), j > 1. This anda2 = −λ2/2 give

dχ2(L (Sn),P(λ)) =
θ2

2

(

1 +O

(

θ

(1− θ)3/2

))

. (4.8)

For a further refinement of (4.6), see Corollary5.3. Note that (4.8) implies that

dKL(L (Sn),P(λ)) 6
θ2

2

(

1 +O

(

θ

(1− θ)3/2

))

.

5 Applications. III. Approximations by signed measures

Since the probability generating function ofSn can be represented as

EzSn = exp

(

∑

j>1

(−1)j−1

j
λj(z − 1)j

)

,

it is well-known since Herrmann [39] that smaller error terms can be achieved if we use finite number of
terms in the exponent to approximateEzSn ; namely,

EzSn ≈ exp

(

∑

16j6k

(−1)j−1

j
λj(z − 1)j

)

,

for k > 1. Anther advantage of such approximations is that the remainder terms tend to zero not only
whenθ → 0 but also whenλ→ ∞ (while θ remaining, say less than1− ε, ε > 0 being a small number).
This gives rise to Poisson approximation via signed measures (sometimes also referred to as compound
Poisson approximations); see Cekanavicius [18], Roos [71], Barbour et al. [5] for more information.

Although these approximations are not probability generating functions fork > 2, they can numeri-
cally and asymptotically be readily computed. Indeed, fork = 2

[zm]eλ(z−1)−λ2(z−1)2/2 = e−λ−λ2/2
λ
m/2
2

m!
Hm

(

λ+ λ2√
λ2

)

,

where theHm(x)’s are the Hermite polynomials.
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5.1 Approximation by eλ(z−1)−λ2(z−1)2/2

We consider the simplest case of such forms whenk = 2.

Lemma 5.1. The inequality
∣

∣

∣

∣

∣

∏

16k6n

(1 + vk)e
−vk − exp

(

−1

2

∑

16k6n

v2k

)∣

∣

∣

∣

∣

6

(

c2V3 +
1

8
V4

)

eV2/2 (5.1)

holds for any complex numbers{vk}, whereVm is given in (3.5) andc2 in (3.3).

Proof. Again by (3.6),

∏

16k6n

(1 + vk)e
−vk −

∏

16k6n

e−v
2
k
/2

=
∑

16k6n

(

(1 + vk)e
−vk − e−v

2
k
/2
)

(

∏

16j<k

(1 + vj)e
−vj

)(

∏

k<j6n

e−v
2
j /2

)

.

Now

∣

∣

∣
(1 + z)e−z − e−z

2/2
∣

∣

∣
=

∣

∣

∣

∣

(1 + z)e−z − 1 +
z2

2
−
(

e−z
2/2 − 1 +

z2

2

)∣

∣

∣

∣

=

∣

∣

∣

∣

−z
3

2

∫ 1

0

(1− t2)e−tzdt− z4

4

∫ 1

0

(1− t)e−tz
2/2dt

∣

∣

∣

∣

6 c2|z|3e|z|
2/2 +

|z|4
8
e|z|

2/2.

This and the inequality (3.1) yield (5.1).

Let
P2(z) := eλ(z−1)−λ2(z−1)2/2.

Theorem 5.2.Assume thatθ < 1. Then

∑

m>0

(P(Sn = m)− [zm]P2(z))
2

e−λ λ
m

m!

6
λ23
λ3

( √
6 c2

(1− θ)2
+

√
3θ

2
√
2(1− θ)5/2

)2

,

∑

m>0

|P(Sn = m)− [zm]P2(z)| 6
λ3
λ3/2

( √
6 c2

(1− θ)2
+

√
3θ

2
√
2(1− θ)5/2

)

,

∑

m>0

∣

∣

∣

∣

P(Sn 6 m)− [zm]
P2(z)

1− z

∣

∣

∣

∣

6
λ3
λ

( √
2 c2

(1− θ)3/2
+

√
3θ

4
√
2(1− θ)2

)

,

∣

∣

∣

∣

P(Sn 6 m)− [zm]
P2(z)

1− z

∣

∣

∣

∣

6
λ3
λ3/2

√

Z(m)

( √
6 c2

(1− θ)2
+

√
3θ

2
√
2(1− θ)5/2

)

,

|P(Sn = m)− [zm]P2(z)| 6
λ3
λ2

√

Z(m)

(

2
√
6 c2

(1− θ)5/2
+

√
15θ

2
√
2(1− θ)3

)

.
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Proof. All estimates follow similarly as the proof of Theorem3.4but with

F (z) =
∏

16j6n

(1 + pj(z − 1))− eλ(z−1)−λ2(z−1)2/2.

For the first two estimates of the theorem, we apply the inequality (5.1), which gives

I(r) 6

(

c2λ3r
3 +

1

8
λ4r

4

)2

eλ2r
2

.

By the inequalityλ4 6 λ3
√
λ2, we obtain

(

∑

m>0

(P(Sn = m)− [zm]P2(z))
2

e−λ λ
m

m!

)1/2

6
λ3
λ3/2





∫ ∞

0

(

c2r
3/2 +

√
θ

8
r2

)2

e−(1−θ)r2





1/2

6
λ3
λ3/2

(

c2
√
6

(1− θ)2
+

√
24θ

8(1− θ)5/2

)

.

Then we apply Proposition2.4. The other estimates are similarly proved.

Lemma 5.3. For anyθ < 1, we have

∑

m>0

(

e−λ λ
m

m!
− [zm]P2(z)

)2

e−λ λ
m

m!

=
1√

1− θ2
− 1. (5.2)

Proof. Applying (2.10) and (2.12) to the function

F (z) = eλ(z−1) − P2(z) = eλ(z−1)

(

∑

k>1

(

λ2
2

)k
(z − 1)2k

k!

)

,

we obtain

∑

m>0

(

e−λ λ
m

m!
− [zm]P2(z)

)2

e−λ λ
m

m!

=
∑

k>1

(

θ

2

)2k
(2k)!

(k!)2
=

1√
1− θ2

− 1.

Corollary 5.4. For θ < 1,
∣

∣

∣

∣

∣

∣

(

∑

m>0

(

P(Sn = m)− e−λ λ
m

m!

)2

e−λ λ
m

m!

)1/2

−
(

1√
1− θ2

− 1

)1/2

∣

∣

∣

∣

∣

∣

6
λ3
λ3/2

(

c2
√
6

(1− θ)2
+

√
24θ

8(1− θ)5/2

)

. (5.3)

Proof. By applying the Minkowsky inequality and the first estimate of Theorem5.2, we obtain
∣

∣

∣

∣

∣

∣

(

∑

m>0

(

P(Sn = m)− e−λ λ
m

m!

)2

e−λ λ
m

m!

)1/2

−
(

∑

m>0

(

e−λ λ
m

m!
− [zm]P2(z)

)2

e−λ λ
m

m!

)1/2
∣

∣

∣

∣

∣

∣

6

(

∑

m>0

(P(Sn = m)− [zm]P2(z))
2

e−λ λ
m

m!

)1/2

6
λ3
λ3/2

(

c2
√
6

(1− θ)2
+

√
24θ

8(1− θ)5/2

)

.

Consequently, by (5.2), we obtain (5.3).
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Note that (5.3) implies that, for allθ < 1,

dχ2(L (Sn),P(λ)) =

(

1√
1− θ2

− 1

)(

1 +O

(

λ3

λ2
√
λ(1− θ)5

))

.

On the other hand, by the inequalitydχ2 > 4d2TV (which following from (2.12) and (2.19)), we obtain
another upper bound fordTV .

Corollary 5.5. For θ < 1,

dTV (Sn,P(λ)) 6
1

2

(

1√
1− θ2

− 1

)1/2

+
λ3
λ3/2

(

c2
√
6

2(1− θ)2
+

√
24θ

16(1− θ)5/2

)

.

6 Comparative discussions

We review briefly some known results in the literature and compare them in this section. For simplicity,
we writed∗ for d∗(L (Sn),P(λ)) throughout this section, whered∗ represents one of the distances we
discuss.

Among the five measures of closeness of Poisson approximation{dχ2, dTV , dW , dK , dP}, the estimation
of the three{dχ2, dK , dP} is generally simpler in complexity since they can all be easily bounded above
by explicit summation or integral representations: see (3.10) for dχ2, (6.2) for dK and (6.3) for dP .

In addition to the Poisson approximations toL (Sn) we consider in this paper, many other different
types of approximations toL (Sn) were proposed in the literature; these include Poisson withdifferent
mean, compound Poisson, translated Poisson, large deviations, other perturbations of Poisson, binomial,
compound binomial, etc. They are too numerous to be listed and compared here; see, for example, Barbour
et al. [9], Roos [69, 72], Barbour and Chryssaphinou [7], Barbour and Chen [6], Röllin [66] and the
references therein.

6.1 Theχ2-distance and the Kullback-Leibner divergence

Borisov and Vorozheı̌kin [14] showed thatdχ2 ∼ θ2/2 under the assumption thatθ = o(λ−1/7). They
also derived in the same paper the identity (3.10) in the special case when allpj ’s are equal. More refined
estimates were then given. The estimate (4.6) we obtained is more general and stronger.

The Kullback-Leibner divergence has been widely studied inthe information-theoretic literature and
many results are known. The connection betweendTV anddKL for general distributions also received
much attention since they can be used to bridge results in probability theory and in information theory;
see the survey paper Fedotov et al. [34] for more information and references. One such tool studiedis
Pinsker’s inequalitydTV 6

√

dKL/2 (see [34]). Note that in the case ofSn, this inequality implies that
dTV 6

√

dχ2/2, while we havedTV 6
√

dχ2/2 by (2.12) and (2.19).
Kontoyiannis et al. [51] recently proved, by an information-theoretic approach, that

dKL 6
1

λ

∑

16j6n

p3j
1− pj

.

The right-hand side in the above inequality is, by Cauchy-Schwarz inequality, always larger thanθ2, pro-
vided that at least one of thepj ’s is nonzero, and can be considerably larger than our estimate (3.12) for
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certain cases. Indeed, take for examplepj = 1/
√
j + 1. Then

dKL 6
1

λ

∑

16j6n

p3j
1− pj

≍ 1√
n
,

where the symbol “an ≍ bn” means thatan is asymptotically of the same order asbn. Our result (3.12)
yields in this case the estimate

dKL 6
2c21θ

2

(1− θ)3
≍ log2 n

n
.

6.2 The total variation distance

We mentioned in Introduction some results in Le Cam [54] and other refinements in the literature of the
form dTV 6 cθ. We briefly review and compare here other results fordTV .

First- and second-order estimates. Kerstan [49], in addition to proving thatdTV 6 0.6θ (which was
later on corrected to1.05 by Barbour and Hall [8]), he also proved the second-order estimate

∑

j>0

∣

∣

∣

∣

P(Sn = j)− e−λ
λj

j!

(

1− λ2
2
C2(λ, j)

)∣

∣

∣

∣

6 1.3
λ3
λ

+ 3.9θ2.

Similar estimates were derived later in Herrmann [39], Chen [23], Barbour and Hall [8]. The order of the
error terms is however not optimal for largeλ; see Theorem4.2.

Many fine estimates were obtained in the series of papers by Deheuvels, Pfeifer and their co-authors.
In particular, Deheuvels and Pfeifer [30] proveddTV 6 θ/(1 −

√
2θ) for θ < 1/2 and the second-order

estimate
∑

j>0

∣

∣

∣

∣

P(Sn = j)− e−λ
λj

j!

(

1− λ2
2
C2(λ, j)

)∣

∣

∣

∣

6
(2θ)3/2

1−
√
2θ
,

for θ < 1/2, the order of the error terms being tight. For many other estimates (including higher-order
ones), see [30, 31]. Their approach is based on a semi-group formulation, followed by applying the fine
estimates of Shorgin [80], which in turn were obtained by the complex-analytic approach of Uspensky
[83]. Following a similar approach, Witte [86] gives an upper bound of the form

dTV 6
e2p∗θ√

2π(1− 2e2p∗θ)
,

for θ < 1
2
e−2p∗, as well as other more complicated ones. Another very different form fordTV can be found

in Weba [85], which results from combining several known estimates.
By refining further Deheuvels and Pfeifer’s approach, Roos [69, 70] deduced several precise estimates

for dTV and other distances. In particular, he showed that

dTV 6

(

3

4e
+

7(3− 2
√
θ)

6(1−
√
θ)2

√
θ

)

θ,

whenθ < 1; see [70] and the references therein. The proof of this estimate is based on a second-order
approximation; see (4.5).
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Note that sincedTV 6 1, any result of the formdTV 6 ϕ(θ)θ for θ 6 θ1, θ1 ∈ (0, 1), also leads to an
upper bound of the formdTV 6 cθ, where

c = sup
06t6θ0

ϕ(t),

θ0 := min{θ1, θ2}, θ2 ∈ (0, 1) solving the equationtϕ(t) = 1.
Higher-order approximations based on Charlier expansion are studied in Herrmann [39], Barbour [3],

Deheuvels and Pfeifer [30], Barbour et al. [9], Roos [69, 71].

Approximations by signed measures. Herrmann [39] proved that, when specializing to the case ofSn,

∑

m>0

∣

∣

∣
P(Sn = m)− [zm]eλ(z−1)−λ2(z−1)2/2

∣

∣

∣
= O

(

λ3
λ

)

,

the rate beingλ1/2 away from optimal; see Theorem5.2. Presman [64] considered the binomial case and
derived an optimal error bound. Kruopis [53] extended further Presman’s analysis and derived

∑

m>0

∣

∣

∣
P(Sn = m)− [zm]eλ(z−1)−λ2(z−1)2/2

∣

∣

∣

6 10̟λ3min
{

1.2σ−3 + 4.2λ2σ
−6, 2 + σ2 + 3.4λ2

}

,

whereσ :=
√
λ− λ2 and

̟ := max
16j6n

sup
06t61

e2pjt(1−pj t), (6.1)

which was in turn refined by Borovkov [15]. Hipp [41] discussed similar expansions for compound Poisson
distributions and attributed the idea to Kornya [52], but his bounds are weaker for largeλ in the special
case ofSn; see alsoČekanavičius [18]. Barbour and Xia [11] proved, as a special case of their general
results, that

∑

m>0

∣

∣

∣
P(Sn = m)− [zm]eλ(z−1)−λ2(z−1)2/2

∣

∣

∣
6

4λ3

λ3/2(1− 2θ)
√

1− θ −maxj pj(1− pj)/λ
,

when θ < 1/2. An extensive study was carried out byČekanavičius in a series of papers dealing
mainly with Kolmogorov’s problem of approximating convolutions by infinitely divisible distributions;
seeČekanavičius [18, 19] and the references cited there. Approximation results using signed compound
measures under more general settings thanSn are derived in Borovkov and Pfeifer [16], Roos [71, 72] and
Čekanavičius [19], Barbour et al. [5].

Other uniform asymptotic approximations. The estimatedTV ∼ θ/
√
2πe holds wheneverθ → 0. A

uniform estimate of the form
dTV = θJ(θ)

(

1 +O
(

λ−1
))

,

asλ→ ∞, was recently derived in [44], where

J(θ) :=
1

θ

(

Φ

(

√

1

θ
log

1

1− θ

)

− Φ

(

√

1− θ

θ
log

1

1− θ

))

,

Φ being the standard normal distribution function. Other more general and more uniform approximations
were also derived in [44].
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6.3 The Wasserstein distance

Deheuvels and Pfeifer [30] proved the asymptotic equivalentdW ∼ λ2/
√
2πλ, whenλ2/

√
λ → ∞, im-

proving earlier results in Deheuvels and Pfeifer [29]. They also obtained many other estimates, including
the following second-order one

∣

∣

∣

∣

dW − λ2e
−λ λ

⌈λ⌉

⌈λ⌉!

∣

∣

∣

∣

6
25/2λ1/2θ3/2

1−
√
2θ

,

for |θ| 6 1/2. Then Witte [86] gave the bound

dW 6 −
√
eλ

2
√
2π

log
(

1− 2e2p∗θ
)

,

for θ < 1
2
e−2p∗. Xia [87] showed thatdW 6 λ2/

√

λ(1− θ); see also Barbour and Xia [12] for the
estimatedW 6 8λ2/(3

√
2eλ). The strongest results including more precise higher-order approximations

were derived by Roos (1999, 2001), where, in particular,

dW 6

(

1√
2e

+
8(2− θ)

5(1−
√
θ)2

√
θ

)

λ2√
λ
.

For other results in connection with Wasserstein metrics, see Deheuvels et al. [27], Hwang [43],
Čekanavičius and Kruopis [20].

6.4 The Kolmogorov distance

It is known, by definition and Newton’s inequality (see Comtet [24, p. 270] or Pitman [60]), that dK 6

dTV 6 2dK ; see Daley and Vere-Jones [26], Ehm [33], Roos [70]. Thus all upper estimates fordTV
translate directly to those fordK and vice versa. Also many approximation results in probability theory for
sums of independent random variables apply toSn. Both types of results are not listed and discussed here;
see for example Arak and Zaı̆tsev [2].

Up to now, we only consider non-uniform bounds fordK . However, effective uniform bounds can be
easily derived based on the Fourier inversion formula

dK = sup
m

∣

∣

∣

∣

∣

1

2π

∫ π

−π

e−imt
EeitSn − eλ(e

it−1)

1− eit
dt

∣

∣

∣

∣

∣

6
1

2π

∫ π

−π

eλ(cos t−1)

|1− eit|

∣

∣

∣

∣

∣

∏

16j6n

(

1 + pj(e
it − 1)

)

e−pj(e
it−1) − 1

∣

∣

∣

∣

∣

dt. (6.2)

From (6.2) and (3.4), we have

dK 6
c1
π
λ2

∫ π

0

∣

∣1− eit
∣

∣ e−σ
2(1−cos t)dt,

which, by the simple inequalities|1− eit| 6 |t| and1− cos t > 2t2/π2 for t ∈ [−π, π], leads to

dK 6
c1
π
λ2

∫ ∞

0

te−2σ2t2/π2

dt =
c1πθ

4(1− θ)
,
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wherec1π/4 ≈ 0.51. Although this bound is worse than some known ones such asdK 6 0.36θ in
Daley and Vere-Jones [26], its derivation is very simple and self-contained, the order being also tight.
Furthermore, the leading constantc1π/4 can be lowered, say to0.363c1 < 0.24, by a more careful analysis
but we are not pursuing this further here. Note that it is known thatdK ∼ θ/(2

√
2πe), asθ = o(1), see

Deheuvels and Pfeifer [30], Hwang [43], where1/(2
√
2πe) ≈ 0.121.

In a little known paper, Makabe [55] gives a systematic study ofdK using standard Fourier analysis,
improving earlier results by Kolmogorov [50], Le Cam [54], Hodges and Le Cam [42]. In particular, he
first derived a second-order estimate from which he deduced thatdK 6 3.7θ and

dK 6
θ

2
+O

(

θ2 + p∗θ
)

.

Forp∗ < 1/5, he also provided a one-page proof of

dK 6
5θ

4(1− 2p∗ − 5θ/2)
6

25θ

12− 50θ
.

A Le Cam-type inequality of the formdK 6 2λ2/π was given in Franken [35], which was later refined
to dK 6 λ2/2 in Serfling [76]; see also Daley [25]. Franken [35] also proves the estimate

dK 6
c

π

(

1− e−λ(1−θ)
) θ

1− θ
,

for an explicitly givenc, as well as higher-order terms fordK based on Charlier expansions. His bound
together withdK 6 1 impliesdK 6 1.9θ, improving previous estimates by Le Cam and Makabe.

Shorgin [80] derived an asymptotic expansion for the distribution ofSn; in particular, as a simple
application of his bounds for|aj| (see (3.9)) and|Ck(λ,m)|,

dK 6

(

1

2
+

√

π

8

)

θ

1−
√
θ
,

where1/2 +
√

π/8 ≈ 1.31. In Hipp [40], the upper bound

dK 6
π

4λ(1− θ)

∑

16j6n

p2j
1− pj

,

was given, so that ifp∗ 6 1/4, then

dK 6
πθ

3(1− θ)
6

1.05θ

1− θ
.

A bound of the form

dK 6
2

π
min

{ √
eθ

2(1− θ)
, λ2

}

was given in Kruopis [53], where he also derived

sup
m

∣

∣

∣

∣

P(Sn 6 m)− [zm]
P2(z)

1− z

∣

∣

∣

∣

6
2

3
̟λ3min

{

1√
πλ3/2(1− θ)3/2

, 1

}

,

where̟ is defined in (6.1). Deheuvels and Pfeifer deduced several estimates fordK ; in particular (see
[30, 31])

sup
m

∣

∣

∣

∣

P(Sn 6 m)− [zm]
P1(z)

1− z

∣

∣

∣

∣

6
5

3

(

θ2

(1−
√
θ)

+
λ3
λ3/2

)

;
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Note that this can also be written as
∣

∣

∣

∣

dK − θ

2
e−λmax

{

λℓ+

ℓ+!
(ℓ+ − λ),

λℓ−

ℓ−!
(λ− ℓ−)

}∣

∣

∣

∣

6
5

3

(

θ2

(1−
√
θ)

+
λ3
λ3/2

)

,

whereℓ± := ⌊λ+ 1/2±
√

λ+ 1/4⌋.
Witte [86] then derived the estimate

dK 6

√
e(1 +

√

π/2)e2p∗

2
√
2π(1− e2p∗θ)

θ,

for θ < e−p∗; see also Weba [85]. Roos [69, 70] gives, among several other fine estimates,

dK 6

(

1

2e
+

6

5(1−
√
θ)

√
θ

)

θ.

Non-uniform estimates are derived in Teerapabolarn and Neammanee [82] for general dependent sum-
mands, which is of the form in the case ofSn

∣

∣

∣

∣

∣

P(Sn 6 m)− e−λ
∑

06j6m

λj

j!

∣

∣

∣

∣

∣

6
(

1− e−λ
)

θmin

{

1,
eλ

m+ 1

}

,

generally weaker than our bounds in Theorems3.4and4.2.

6.5 The point probabilities

As for dK above, the point metric can also be readily estimated by using the integral representation

dP 6
1

2π

∫ π

−π

eλ(cos t−1)

∣

∣

∣

∣

∣

∏

16j6n

(

1 + pj(e
it − 1)

)

e−pj(e
it−1) − 1

∣

∣

∣

∣

∣

dt, (6.3)

and (3.4), and we obtain for example

dP 6
c1π

5/2θ

8
√
2λ(1− θ)3/2

.

Classical local limit theorems for probabilities of moderate or large deviations can also be used to give
effective bounds for the point metricdP := maxm |P(Sn = m)− e−λλm/m!|; they are not discussed here.

Results fordP were derived in Franken [35] but are too complicated to be described here. Kruopis [53]
gives the estimate

dP 6 min

{ √
eθ√

πλ(1− θ)3/2
, λ2

}

,

as well as

sup
m

|P(Sn = m)− [zm]P2(z)| 6
8̟

3π
λ3min

{

1

λ2(1− θ)2
,
4

3

}

.

Barbour and Jensen [10] derived an asymptotic expansion; see also [3].
Asymptotically, asθ → 0,

dP ∼ θ

2
√
2πλ

,
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see Roos [68], where he also derived a second-order estimate fordP , which was later refined in [69, 70].
In particular,

dP 6

(

1

2

(

3

2e

)3/2

+
6− 4

√
θ

3(1−
√
θ)2

√
θ

)

θ√
λ
.

A non-uniform bound was given in Neammanee [57, 58] of the form
∣

∣

∣

∣

P(Sn = m)− e−λ
λm

m!

∣

∣

∣

∣

6 min
{

m−1, λ−1
}

λ2,

wheneverλ 6 1.
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[79] SZEGÖ, G. (1939).Orthogonal Polynomials.American Mathematical Society, New York.

[80] SHORGIN, S. Y. (1977). Approximation of a generalized Binomial distribution.Theory Probab. Appl.
22 846–850.

[81] STEELE, J. M. (1994). Le Cam’s inequality and Poisson approximations.Amer. Math. Monthly101
48–54.

[82] TEERAPABOLARN, K. AND NEAMMANEE , K. (2006). Poisson approximation for sums of depen-
dent Bernoulli random variables.Acta Math. Acad. Paedagog. Nyhazi. (N.S.)2287–99.

33



[83] USPENSKY, J. V. (1931). On Ch. Jordan’s series for probability.Ann. Math.32 306–312.

[84] VERVAAT, W. (1969). Upper bounds for the distance in total variationbetween the binomial or
negative binomial and the Poisson distribution.Statist. Neerlandica2379–86.

[85] WEBA, M. (1999). Bounds for the total variation distance betweenthe binomial and the poisson
distribution in the case of medium-sized success probabilities.J. Appl. Probab.3697–104.

[86] WITTE, H.-J. (1990). A unification of some approaches to Poisson approximation.J. Appl. Probab.
27 611–621.

[87] X IA , A. (1997). On the rate of Poisson process approximation to aBernoulli process.J. Appl. Probab.
34 898–907.

34


	Introduction
	A historical account with brief review of results
	Our new approach

	The new Charlier-Parseval approach
	Definition and basic properties of Charlier polynomials
	The Charlier-Parseval identity
	A probabilistic interpretation of the Charlier-Parseval identity
	Asymptotic forms of the Charlier-Parseval identity
	Some useful estimates of Tauberian type

	Applications. I. Distances for Poisson approximation
	Lemmas
	New results

	Applications. II. Second-order estimates
	Applications. III. Approximations by signed measures
	Approximation by e(z-1)-2(z-1)2/2

	Comparative discussions
	The 2-distance and the Kullback-Leibner divergence
	The total variation distance
	The Wasserstein distance
	The Kolmogorov distance
	The point probabilities


