Skip to main content
Log in

Characterization of anticancer hypocrellin A encapsulated with silica nanoparticles

Thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hypocrellins, natural photosensitizers including hypocrellin A (HA) and hypocrellin B (HB), have been used as a traditional Chinese herbal medicine to cure various skin diseases. Hypocrellins have excellent antiviral activity, which can inhibit the growth of human immunodeficiency virus. They also exhibit significant light-induced antitumor property. In this article, thermal analysis technologies (e.g., differential scanning calorimetry and thermogravimetry) are employed to characterize whether the photosensitive hypocrellin A could be encapsulated with silica nanoparticle (SN) material or not, and evaluate the stability of inclusion complex. The results show that the inclusion complex exhibits improved performance in both stability and hydrophilicity than natural hypocrellin A. Fluorescence spectrophotometry studies have also been performed to verify the thermal analysis results. The results suggest that the thermal analysis technology could be used as an effective and rapid tool to characterize the encapsulation properties of the novel anticancer HA–SN complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Roy I, Ohulchanskyy TJ, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN. Ceramic-based entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 2003;125(26):7861–5.

    Google Scholar 

  2. Falk H. From the photosensitizer hypericin to the photoreceptor stentorin—the chemistry of phenanthroperylene quinones. Angew Chem Int Ed. 1999;38:3116–36.

    Article  Google Scholar 

  3. Diwu ZJ, Lown JW. Hypocrellins and their uses in photosensitization. Photochem Photobiol. 1990;52:609–16.

    Article  CAS  Google Scholar 

  4. Falk H. From the photosensitizer hypericin to the photoreceptor stentorin—the chemistry of phenanthroperylene quinones. Angew Chem Int Ed. 1999;38:3116–36.

    Article  Google Scholar 

  5. Zhou J, Liu J, Xia S, Wang X, Zhang B. Effect of chelation to lanthanum ions on the photodynamic properties of hypocrellin A. J Phys Chem B. 2005;109(41):19529–35.

    Article  CAS  Google Scholar 

  6. Zhou JH, Wu XH, Wei SH, Gu XT, Feng YY, Wang XS, et al. Raman spectroscopic study of photosensitive damage to lysozyme structure sensitized by hypocrellin A. Spectroscopy. 2006;20(5–6):269–73.

    CAS  Google Scholar 

  7. Yuying F, Xiaohong W, Jiahong Z, Xiaotian G, Tianhong L, Xuesong W, et al. Study on interaction between hypocrellin A and hemoglobin using spectral methods. Chin J Appl Chem. 2005;22(8):895–8. (in Chinese).

    Google Scholar 

  8. Yan F, Kopelman R. The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties. Photochem Photobiol. 2003;78(6):587–91.

    Article  CAS  Google Scholar 

  9. Zhou JH, Wu XH, Yang C, Gu XT, Gu T, Zhou L, et al. Spectroscopic studies on the interaction of hypocrellin A with myoglobin. Spectrosc Int J. 2007;21:235–43.

    CAS  Google Scholar 

  10. Miller GG, Brown K, Ballangrud AM, et al. Preclinical assessment of hypocrellin B and hypocrellin B. derivatives as sensitizer for photodynamic therapy of cancer: progress update. Photochem Photobiol. 1997;65(4):714–22.

    Article  CAS  Google Scholar 

  11. Wendlandt WWm. Thermal analysis. 3rd ed. New York: Wiley; 1985.

    Google Scholar 

  12. Yavlovich A, Singh A, Tarasov S, Capala J, Blumenthal R, Puri A. Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J Therm Anal Calorim. 2009;98:97–104.

    Article  CAS  Google Scholar 

  13. Lopez C, Ollivon M. Crystallisation of triacylglycerols in nanoparticles, effect of dispersion and polar lipids. J Therm Anal Calorim. 2009;98:29–37.

    Article  CAS  Google Scholar 

  14. Lee-Sullivan P, Bettle M. Comparison of enthalpy relaxation between two different molecular masses of a bisphenol-A polycarbonate. J Therm Anal Calorim. 2005;81:169–77.

    Article  CAS  Google Scholar 

  15. Šesták J, Zámečník J. Can clustering of liquid water and thermal analysis be of assistance for better understanding of biological germplasm exposed to ultra-low temperatures. J Therm Anal Calorim. 2007;88(2):411–6.

    Article  Google Scholar 

  16. Bellavia G, Cordone L, Cupane A. Calorimetric study of myoglobin embedded in trehalose–water matrixes. J Therm Anal Calorim. 2009;95(3):699–702.

    Article  CAS  Google Scholar 

  17. Khvedelidze M, Mdzinarashvili T, Partskhaladze T, Nafee N, Schaefer UF, Lehr C-M, Schneider M. Calorimetric and spectrophotometric investigation of PLGA nanoparticles and their complex with DNA. J Therm Anal Calorim. 2009. doi:10.1007/s10973-009-0137-x.

    Google Scholar 

  18. Pentak D, Su_kowski WW, Su_kowska A. Calorimetric and Epr studies of the thermotropic phase behavior of phospholipid membranes. J Therm Anal Calorim. 2008;93(2):471–7.

    Article  CAS  Google Scholar 

  19. Giancola C. A convenient tool for studying the stability of proteins and nucleic acids. Differential scanning calorimetry. J Therm Anal Calorim. 2008;91(1):79–85.

    Article  CAS  Google Scholar 

  20. González-Irún Rodríguez J, Carreira P, García-Diez A, Hui D, Artiagaand R, Liz-Marzán LM. Nanofiller effect on the glass transition of a polyurethane. J Therm Anal Calorim. 2007;87(1):45–7.

    Article  Google Scholar 

  21. Gabelical Z, Charmot A, Vataj R, Soulimane R, Barrault J, Valange S. Thermal degradation of iron chelate complexes adsorbed on mesoporous silica and alumina. J Therm Anal Calorim. 2009;95(2):445–54.

    Article  Google Scholar 

  22. Markovska IG, Lyubchev LA. A study on the thermal destruction of rice husk in air and nitrogen atmosphere. J Therm Anal Calorim. 2007;89(3):809–14.

    Article  CAS  Google Scholar 

  23. ASTM E794-81: Standard test method for melting temperatures and crystallization temperatures by thermal analysis.

  24. ASTM E914-83: Standard test method for practice for evaluating temperature scale for thermogravity.

  25. Zhongmin L. The general analysis and measurement test order of Modern analytical instruments. Beijing, China: Science and Technology Literature Publishing House; 1997.

Download references

Acknowledgements

This research was supported by the grants received from the Natural Science Foundation of China (No. 20603018), and the Natural Science Foundation of Jiangsu Province of China (No. BM2007132)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Zhou, L., Zhou, J. et al. Characterization of anticancer hypocrellin A encapsulated with silica nanoparticles. J Therm Anal Calorim 102, 69–74 (2010). https://doi.org/10.1007/s10973-009-0630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0630-2

Keywords

Navigation