Skip to main content
Log in

Propyl paraben-induced changes in dipalmitoyl phosphatidylethanolamine vesicles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article reports the influence of the preservative, propyl paraben (PPB), on the phase transition and dynamics of dipalmitoyl phosphatidylethanolamine (DPPE) vesicles both in multilamellar vesicular (MLV) and unilamellar vesicular (ULV) forms using DSC and (1H and 31P) NMR. DSC results indicate that the mechanism by which PPB interacts with DPPE vesicles is similar in both forms. Addition of PPB to DPPE dispersion results in lowering of the gel to liquid crystalline phase transition temperature (T m) and consequently increases DPPE headgroup fluidity. At high PPB concentration, additional transitions are observed whose intensity increases with increasing PPB concentration. DSC and NMR data indicate that the PPB molecules get intercalated between the DPPE headgroups as the polar group of the PPB molecules interacts with the polar group of PE, and the alkyl chain of PPB penetrates into the acyl chain region. The interesting finding with MLV is that the gel phase of DPPE in the presence of PPB, on equilibration at 25 °C, transforms to a stable crystalline subgel phases and whose intensity increases with increasing PPB concentration. The effect of inclusion of cholesterol in the PPB-free and PPB-doped DPPE dispersion was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Soni MG, Burdock GA, Taylor SL, Greenberg NA. Safety assessment of propyl paraben: a review of the published literature. Food Chem Toxicol. 2001;39:513–32.

    Article  CAS  Google Scholar 

  2. Elder RL. Final report on the safety assessment of methylparaben, ethylparaben, propylparaben, and butylparaben. J Am Coll Toxicol. 1984;3:147–209.

    Google Scholar 

  3. Perlovich GL, Rodionov SV, Bauer-Brandl A. Thermodynamics of solubility, sublimation and solvation processes of parabens. Eur J Pharm Sci. 2005;24:25–33.

    Article  CAS  Google Scholar 

  4. Eklund T. Inhibition of growth and uptake processes in bacteria by some chemical food preservatives. J Appl Bacteriol. 1980;48:423–32.

    CAS  Google Scholar 

  5. Eklund T. The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles. J Gen Microbiol. 1985;131:73–6.

    CAS  Google Scholar 

  6. Freese E, Levin BC. Action mechanisms of preservatives and antiseptics. Dev Incl Microbiol. 1978;19:207–27.

    Google Scholar 

  7. Freese E, Shen CW, Galliers E. Function of lipophilic acids as antimicrobial food additives. Nature. 1973;241:321–4.

    Article  CAS  Google Scholar 

  8. Harvey PW, Everett DJ. Significance of the detection of esters of p-hydroxybenzoic acid (parabens) in human breast tumours. J Appl Toxicol. 2004;24:1–4.

    Article  CAS  Google Scholar 

  9. Darbre PD. Environmental oestrogens, cosmetics and breast cancer. Best Practice Res Clin Endocrinol Metabol. 2006;20:121–43.

    Article  CAS  Google Scholar 

  10. Gennis RB. Biomembranes: molecular structure and function. New York: Springer; 1989.

    Google Scholar 

  11. Panicker L. Effect of propyl paraben on the dipalmitoyl phosphatidic acid vesicles. J Colloid Interface Sci. 2007;311:407–16.

    Article  CAS  Google Scholar 

  12. Panicker L. Interaction of propyl paraben with dipalmitoyl phosphatidylcholine bilayer: a differential scanning calorimetry and nuclear magnetic resonance study. Colloids Surf B Biointerfaces. 2008;61:145–52.

    Article  CAS  Google Scholar 

  13. Panicker L, Narasimhan SL, Mishra KP. Reduced fluidity of dipalmitoyl phosphatidic acid membranes by salicylic acid. Thermochim Acta. 2005;432:41–6.

    Article  CAS  Google Scholar 

  14. Panicker L, Mishra KP. Salicylic acid-induced effects in the mixed-lipid (dipalmitoyl phosphatidylcholine–dipalmitoyl phosphatidylethanolamine) model membrane. J Colloid Interface Sci. 2005;290:250–8.

    Article  CAS  Google Scholar 

  15. Panicker L, Mishra KP. Nuclear magnetic resonance and thermal studies on the interaction between salicylic acid and model membranes. Biophys Chem. 2006;120:15–23.

    Article  CAS  Google Scholar 

  16. Koynova R, Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids. 1994;69:1–34.

    Article  CAS  Google Scholar 

  17. Stümpel J, Harlos K, Eibl H. Charge-induced pretransition in phosphatidylethanolamine multilayers. The occurrence of ripple structures. Biochim Biophys Acta. 1980;599:464–72.

    Article  Google Scholar 

  18. Panicker L. Influence of the leprosy drug, dapsone on the model membrane dipalmitoyl phosphatidylethanolamine. Thermochim Acta. 2006;447:123–30.

    Article  CAS  Google Scholar 

  19. Ladbrooke BD, Williams RM, Chapman D. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta. 1968;29(150):333–40.

    Google Scholar 

  20. Oldfield E, Chapman D. Dynamics of lipids in membranes: heterogeneity and the role of cholesterol. FEBS Lett. 1972;23:285–97.

    Article  CAS  Google Scholar 

  21. Tenchov BG, Lis LJ, Quinn PJ. Structural rearrangements during crystal–liquid–crystal and gel–liquid–crystal phase transitions in aqueous dispersions of dipalmitoylphosphatidylethanolamine. A time-resolved X-ray diffraction study. Biochim Biophys Acta. 1988;942:305–14.

    Article  CAS  Google Scholar 

  22. Vaughan DJ, Keough KM. Changes in phase transition of phosphatidylethanolamine—and phosphatidylcholine—water dispersions induced by small modifications in the head group and backbone region. FEBS Lett. 1974;47:158–61.

    Article  CAS  Google Scholar 

  23. Mantsch HH, Hsi SC, Butler KW, Cameron DG. Studies on the thermotropic behavior of aqueous phosphatidylethanolamines. Biochim Biophys Acta. 1983;728:325–30.

    Article  CAS  Google Scholar 

  24. Horniak L, Kutejova E, Balgavy P. Effect of phase transitions in hydrated 1,2-dipalmitoylphosphatidylethanolamine bilayers on the spin probe order parameter. FEBS Lett. 1987;224:283–6.

    Article  CAS  Google Scholar 

  25. Lin BZ, Yin CC, Hauser H. The effect of positive and negative pH-gradients on the stability of small unilamellar vesicles of negatively charged phospholipids. Biochim Biophys Acta. 1993;1147:237–44.

    Article  CAS  Google Scholar 

  26. Tenchov B, Koynova R, Rapp G. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids. Biophys J. 2001;80:1873–90.

    Article  CAS  Google Scholar 

  27. Lewis RNAH, McElhaney RN. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1, 2-diacyl phosphatidylethanolamine. Biophys J. 1993;64:1081–96.

    Article  CAS  Google Scholar 

  28. Kodama M, Inoue H, Tsuchida Y. The behavior of water molecules associated with structural changes in phosphatidylethanolamine assembly as studied by DSC. Thermochim Acta. 1995;266:373–84.

    Article  CAS  Google Scholar 

  29. Mulukutla S, Shipley GG. Structure and thermotropic properties of phosphatidylethanolamine and its N-methyl derivatives. Biochemistry. 1984;23:2514–9.

    Article  CAS  Google Scholar 

  30. Chang H, Epand RM. The existence of a highly ordered phase in fully hydrated dilauroylphosphatidylethanolamine. Biochim Biophys Acta. 1983;728:319–24.

    Article  CAS  Google Scholar 

  31. Seddon JM, Harlos K, Marsh D. Metastability and polymorphism in the gel and fluid bilayer phases of dilauroylphosphatidylethanolamine. Two crystalline forms in excess water. J Biol Chem. 1983;258:3850–4.

    CAS  Google Scholar 

  32. Wilkinson DA, Nagle JF. Metastability in the phase behavior of dimyristoylphosphatidylethanolamine bilayers. Biochemistry. 1984;23:1538–41.

    Article  CAS  Google Scholar 

  33. Hentschel MP, Braun S, Dietrich R, Trahms L. NMR and X-Ray investigation of the phase behavior of phosphatidylethanolamines. Mol Cryst Liq Cryst. 1985;124:205–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Panicker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panicker, L. Propyl paraben-induced changes in dipalmitoyl phosphatidylethanolamine vesicles. J Therm Anal Calorim 99, 583–592 (2010). https://doi.org/10.1007/s10973-009-0609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0609-z

Keywords

Navigation