Skip to main content
Log in

Thermal analysis of two types of dextran-coated magnetite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal stability of two kinds of dextran-coated magnetite (dextran with molecular weight of 40,000 (Dex40) and 70,000 (Dex70)), obtained by dextran adsorption onto the magnetite surface is investigated in comparison with free dextran in air and argon atmosphere. The thermal behavior of the two free dextran types and corresponding coated magnetites is similar, but atmosphere dependent. The magnetite catalyzes the thermal decomposition of dextran, the adsorbed dextran displaying lower initial decomposition temperatures comparative with the free one in both working atmospheres. The dextran adsorbed onto the magnetite surface decomposes in air through a strong sharp exothermic process up to ~450 °C while in argon atmosphere two endothermic stages are identified, one in the temperature range 160–450 °C and the other at 530–800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okassa LN, Marchais H, Douziech-Eyrolles L, Cohen-Jonathan S, Souce M, Dubois P, et al. Development and characterization of sub-micron poly(d, l-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles. Int J Pharm. 2005;302:187–96.

    Article  Google Scholar 

  2. Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc. 2002;124:2856–7.

    Article  CAS  Google Scholar 

  3. Kohler N, Fryxell GE, Zhang M. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc. 2004;126:7206–11.

    Article  CAS  Google Scholar 

  4. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M. Methotrexate immobilized poly(ethylene glycol) magnetic nanoparticles for mr imaging and drug delivery. Small. 2006;2:785–91.

    Article  CAS  Google Scholar 

  5. Pardol H, Chua-anusorn W, St. Pierre TG, Dobson J. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater. 2001;225:41–6.

    Article  Google Scholar 

  6. Bautista MC, Bomati-Miguel O, Del Puerto Morales M, Serna CJ, Veintemillas-Verdaguer S. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J Magn Magn Mater. 2005;293:20–7.

    Article  CAS  Google Scholar 

  7. Xia Z, Wang G, Tao K, Li J. Preparation of magnetite–dextran microspheres by ultrasonication. J Magn Magn Mater. 2005;293:182–6.

    Article  CAS  Google Scholar 

  8. Xu XQ, Shen H, Xu JR, Li XJ, Xiong XM. Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran. Appl Surf Sci. 2005;252:494–500.

    Article  CAS  Google Scholar 

  9. Chan HT, Do YY, Huang PL, Chien PL, Chan TS, Liu RS, et al. Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles. J Magn Magn Mater. 2006;304:e415–7.

    Article  CAS  Google Scholar 

  10. Hai TH, Phuc LH, Dung DTK, Huyen NTL, Long BD, Vinh LK, et al. Iron oxide nanoparticles with biocompatible starch and dextran coatings for biomedicine applications. Adv Nat Sci. 2008;9:87–92.

    CAS  Google Scholar 

  11. Morais PC, Silveira LB, Oliveira AC, Santos JG. Initial dynamic susceptibility of biocompatible magnetic fluids. Rev Adv Mater Sci. 2008;18:536–40.

    CAS  Google Scholar 

  12. Hildebrandt N, Hermsdorf D, Signorell R, Schmitz SA, Diederichsen U. Superparamagnetic iron oxide nanoparticles functionalized with peptides by electrostatic interactions. ARKIVOC 2007;v:79–90.

    Google Scholar 

  13. Shen TT, Wiessleder R, Papisov M, Bogdanov AJ, Brady TJ. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med. 1993;29:599–604.

    Article  CAS  Google Scholar 

  14. Martinez-Mera I, Espinosa ME, Perez-Hernandez R, Arenas-Alatorre J. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Mater Lett. 2007;61:4447–51.

    Article  CAS  Google Scholar 

  15. Qiu J, Yang R, Li M, Jiang N. Preparation and characterization of porous ultrafine Fe2O3 particles. Mater Res Bull. 2005;40:1968–75.

    Article  CAS  Google Scholar 

  16. Alvarez GS, Muhammed M, Zagorodni AA. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci. 2006;61:4625–33.

    Article  Google Scholar 

  17. Deng Y, Wang L, Yang W, Fu S, Elaissari A. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J Magn Magn Mater. 2003;257:69–78.

    Article  CAS  Google Scholar 

  18. Jia Z, Yujun W, Yangcheng L, Jingyu M, Guangsheng L. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React Funct Polym. 2006;66:1552–8.

    Article  Google Scholar 

  19. Dai Z, Meiser F, Möhwald H. Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J Colloid Interface Sci. 2005;288:298–300.

    Article  CAS  Google Scholar 

  20. Mao B, Kang Z, Wang E, Lian S, Gao L, Tian C, et al. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull. 2006;41:2226–31.

    Article  CAS  Google Scholar 

  21. Woo K, Hong J, Ahn JP. Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine. J Magn Magn Mater. 2005;293:177–81.

    Article  CAS  Google Scholar 

  22. Kahn HR, Petrikowski K. Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. J Magn Magn Mater. 2000;215–216:526–8.

    Article  Google Scholar 

  23. Abu Mukh-Qasem R, Gedanken A. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci. 2005;284:489–94.

    Article  CAS  Google Scholar 

  24. Jung CW. Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging. 1995;13:675–91.

    Article  CAS  Google Scholar 

  25. Palnichenko AV, Rossolenko AN, Kopylov VN, Zer’kova II, Aronin AS. Synthesis of wustite nanowires by carbon plasma pulse assisted method. Chem Phys Lett. 2005;410:436–40.

    Article  CAS  Google Scholar 

  26. Da Costa GM, De Grave E, Vandenberghe PMA. Synthesis and characterization of some iron oxides by sol-gel method. J Solid State Chem. 1994;113:405–12.

    Article  CAS  Google Scholar 

  27. Patron L, Marinescu G, Culita DC, Diamandescu L, Carp O. Thermal stability of amino acid-(tyrosine and tryptophan) coated magnetites. J Therm Anal Calorim. 2008;91:627–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela C. Culita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carp, O., Patron, L., Culita, D.C. et al. Thermal analysis of two types of dextran-coated magnetite. J Therm Anal Calorim 101, 181–187 (2010). https://doi.org/10.1007/s10973-009-0593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0593-3

Keywords

Navigation