Skip to main content
Log in

Shear and extensional flows as drivers for the crystallisation of isotactic polypropylene

When rheology, microscopy and thermal analysis must meet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The article addresses the relevance of shear and uniaxial extensional flow behaviour on the crystallisation of isotactic polypropylenes differing in terms of molar mass distribution (MMD). The importance of combining several experimental techniques, namely rheological, thermal and microscopic, to follow the response of the material arising from the application of given processing conditions, is here demonstrated. Systems with a broader MMD possessing even residual amounts of high molar mass (M M) tails were shown to be more prone to develop β-phase crystallites. The latter effect was seen to be a consequence of the application of a step shear at a temperature for which the formation of β-phase is known to be preferential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padden FJ, Keith HD. Spherulitic crystallisation in polypropylene. J Appl Phys. 1959;30:479–85.

    Article  Google Scholar 

  2. Natta G, Corradini P. Structure and properties of isotactic polypropylene. Nuovo Cimmento Suppl. 1960;15:40–51.

    Article  CAS  Google Scholar 

  3. Turner-Jones A, Aizlewood JM, Beckett DR. Crystalline forms of isotactic polypropylene. Makromol Chem. 1964;75:134–58.

    Article  CAS  Google Scholar 

  4. Varga J. β-Modification of isotatic polypropylene: preparation, structure, processing, properties, and application. Macromol Sci Phys. 2002;41:1121–71.

    Article  Google Scholar 

  5. Varga J. Crystallization melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites, vol. 1. London: Chapman & Hall; 1995.

    Google Scholar 

  6. Kristiansen PM, Gress A, Smith P, Nanft D, Schmidt HW. Phase behavior, nucleation and optical properties of the binary system isotactic polypropylene/N, N′, N″-tris-isopentyl-1, 3, 5-benzene-tricarboxamide. Polymer. 2006;47:249–53.

    Article  CAS  Google Scholar 

  7. Tjong SC, Shen JS, Li RKY. Morphological behaviour and instrumented dart impact properties of β-crystalline-phase polypropylene. Polymer. 1996;37:2309–16.

    Article  CAS  Google Scholar 

  8. Karger-Kocsis J. How does phase transformation toughening work in semicrystalline polymers? Polym Eng Sci. 1996;36:203–10.

    Article  CAS  Google Scholar 

  9. Kotek J, Raab M, Baldrian J, Grellmann W. The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene. J Appl Polym Sci. 2002;85:1174–84.

    Article  CAS  Google Scholar 

  10. Obadal M, Čermák R, Baran N, Stoklasa K, Šimoník J. Impact strength of β-nucleated polypropylene. Int Polym Process. 2004;19:35–9.

    CAS  Google Scholar 

  11. http://www.borealisgroup.com/pdf/literature/borealis-borouge/product-news/K_PN_No_29_GB_PF_2007_10_BB.pdf.

  12. Gotsis AD, Zeevenhoven BLF. Effect of long branches on the rheology of polypropylene. J Rheol. 2004;48:895–914.

    Article  CAS  Google Scholar 

  13. Sugimoto M, Masubuchi Y, Takimoto J, Koyama K. Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. Uniaxial and biaxial extensional flow. Macromolecules. 2001;34:6056–63.

    Article  CAS  Google Scholar 

  14. Meerveld J, Peters GWM, Hütter M. Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol Acta. 2004;44:119–34.

    Article  CAS  Google Scholar 

  15. Balzano L, Rastogi S, Peters GWM. Flow induced crystallization in isotactic polypropylene-1, 3:2, 4-bis(3, 4-dimethylbenzylidene)sorbitol blends: implications on morphology of shear and phase separation. Macromolecules. 2008;41:399–408.

    Article  CAS  Google Scholar 

  16. Nogales A, Hsiao BS, Somani RH, Srivinas S, Tsou AH, Balta-Calleja FJ, et al. Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer. 2001;42:5247–56.

    Article  CAS  Google Scholar 

  17. Baert J, Van Puyvelde P. Effect of molecular and processing parameters on the flow-induced crystallization of poly-1-butene. Part 1: kinetics and morphology. Polymer. 2006;47:5871–9.

    Article  CAS  Google Scholar 

  18. Baert J, Van Puyvelde P, Langouche F. Flow-induced crystallization of PB-1: from the low shear rate region up to processing rates. Macromolecules. 2006;39:9215–22.

    Article  CAS  Google Scholar 

  19. U.S. Patent 5,998,558.

  20. Janeschitz-Kriegl H, Ratajski E, Wippel H. The physics of a thermal nuclei in polymer crystallization. Colloid Polym Sci. 1999;277:217–26.

    Article  CAS  Google Scholar 

  21. Stadlbauer M, Eder G, Janeschitz-Kriegl H. Crystallization kinetics of two aliphatic polyketones. Polymer. 2001;42:3809–16.

    Article  CAS  Google Scholar 

  22. Olley RH, Basset DC. On surface morphology and drawing of polypropylene films. J Macromol Sci Phys. 1994;33:209–27.

    Article  Google Scholar 

  23. Hobbs SY, Pratt CF. The development of surface texture in blown polypropylene film. Polym Eng Sci. 1982;22:594–600.

    Article  CAS  Google Scholar 

  24. Gahleitner M, Bachner C, Ratajski E, Rohaczeck G, Neißl W. Effects of the catalyst system on the crystallization of polypropylene. J Appl Polym Sci. 1999;73:2507–15.

    Article  CAS  Google Scholar 

  25. Gahleitner M, Bernreitner K, Neißl W. Crystallisation and mechanical properties of polypropylene homopolymers as influenced by molecular structure and nucleation. Polym Test. 1995;14:173–87.

    Article  CAS  Google Scholar 

  26. Stadlbauer M, Janeschitz-Kriegl H, Lipp M, Eder G, Ratjski E. New extensional rheometer for creep flow at high tensile stress. Part II. Flow induced nucleation for the crystallization of iPP. J Rheol. 2004;48:631–40.

    Article  CAS  Google Scholar 

  27. Stadlbauer M, Janeschitz-Kriegl H, Lipp M, Eder G, Forstner R. Extensional rheometer for creep flow at high tensile stress. Part I. Description and validation. J Rheol. 2004;48:611–30.

    Article  CAS  Google Scholar 

  28. Hadinata C, Boos D, Gabriel C, Wassner E, Rüllmann M, Kao N, et al. Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization. J Rheol. 2007;51:195–216.

    Article  CAS  Google Scholar 

  29. Yamaguchi M, Wagner MH. Impact of processing history on rheological properties for branched polypropylene. Polymer. 2006;47:3629–35.

    Article  CAS  Google Scholar 

  30. Eckstein A, Suhm J, Friedrich C, Maier RD, Sassmannshausen J, Bochmann M, et al. Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts. Macromolecules. 1998;31:1335–40.

    Article  CAS  Google Scholar 

  31. Muenstedt H. Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol. 1980;24:847–68.

    Article  CAS  Google Scholar 

  32. Takahashi T, Takimoto JH, Koyama K. Elongational viscosity for miscible and immiscible polymer blends. II. Blends with a small amount of UHMW polymer. J Appl Polym Sci. 1999;72:961–9.

    Article  CAS  Google Scholar 

  33. Vleeshouwers S, Meijer HEH. A rheological study of shear induced crystallization. Rheol Acta. 1996;35:391–9.

    Article  CAS  Google Scholar 

  34. Somani R, Hsiao BS, Nogales A, Fruitwala H, Srivinas S, Tsou AH. Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules. 2001;34:5902–9.

    Article  CAS  Google Scholar 

  35. Varga J, Karger-Kocsis J. Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci B Polym Phys. 1996;34:657–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Uttenthaler for the SAOS measurements, Christian Samhaber for the isothermal crystallisation measurements and to J. Wolfschwenger for the GPC data. Prof. G. Eder and Dr. E. Ratajski are greatly acknowledged for the nucleation density measurements. An acknowledgement is due to Dr. J. Reussner for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Filipe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipe, S., Knogler, B., Buchmann, K. et al. Shear and extensional flows as drivers for the crystallisation of isotactic polypropylene. J Therm Anal Calorim 98, 667–674 (2009). https://doi.org/10.1007/s10973-009-0517-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0517-2

Keywords

Navigation