Skip to main content
Log in

Effect of amyloid beta peptides Aβ1–28 and Aβ25–40 on model lipid membranes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To investigate the molecular interaction of amyloid beta peptides Aβ1–28 or Aβ25–40 with model lipid membranes differential scanning calorimetry (DSC) and DPH and TMA DPH fluorescence anisotropy approaches were used. The main transition temperature (T m) and enthalpy change (ΔH) of model lipid membranes composed of DMPC/DPPG on addition of Aβ25–40 or Aβ25–40 at 10:1 (w/w) phospholipid/peptide ratio either non-aggregated or previously aggregated were examined. The effect of Aβ1–28 and Aβ25–40 on the membrane fluidity of liposomes made of DMPC/DPPG (98:2 w/w) was determined by fluorescence anisotropy of incorporated DPH and TMA DPH. The results of this study provide information that Aβ1–28 preferentially interacts with the hydrophilic part of the model membranes, while Aβ25–40 rather locates itself in the hydrophobic core of the bilayer where it reduces the order of the phospholipids packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Aβ:

β-amyloid peptide

AD:

Alzheimer’s disease

Buffer:

10 mM Hepes buffer pH-7.4

Cp:

Heat capacity

DMPC:

1,2-dimyristoyl-sn-glycero-3-phosphocholine

DPPG:

Dipalmitoylphosphatidylglycerol

DPH:

1,6-diphenyl-1,3,5-hexatriene

DSC:

Differential scanning calorimetry

ΔH :

Main phase-transition enthalpy

L:P:

Lipid:peptide ratio

LUV:

Large unilamellar vesicles

T m :

Gel to liquid-crystalline phase transition temperature

TMA-DPH:

1-[4-(trimethyl-ammonium) phenyl]- 6-phenyl-1,3,5-hexatriene

References

  1. Prusiner SB. Prions. Proc Natl Acad Sci USA. 1998;95:13363–83.

    Article  CAS  Google Scholar 

  2. Dobson CM. Protein folding and misfolding. Nature. 2003;426:884–90.

    Article  CAS  Google Scholar 

  3. Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, et al. Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol. 2003;62:885–98.

    CAS  Google Scholar 

  4. Temussi PA, Masino L, Pastore A. From Alzheimer to Huntington: why is a structural understanding so difficult?. EMBO J. 2003;22:355–61.

    Article  CAS  Google Scholar 

  5. Serpell LC. Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta. 2000;1502:16–30.

    CAS  Google Scholar 

  6. Rottkamp CA, Atwood CS, Joseph JA, Nunomura A, Perry G, Smith MA. The state versus amyloid-beta: the trial of the most wanted criminal in Alzheimer disease. Peptides. 2002;23:1333–41.

    Article  CAS  Google Scholar 

  7. DeMarco ML, Daggett V. From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci USA. 2004;101:2293–98.

    Article  CAS  Google Scholar 

  8. Klajnert B, Cladera J, Bryszewska M. Molecular interactions of dendrimers with amyloid peptides: pH dependence. Biomacromolecules 2006;7:2186–91.

    Article  CAS  Google Scholar 

  9. Sabate R, Gallardo M, Estelrich J. Spontaneous incorporation in β-amyloid peptide into neutral liposomes. Colloids Surf. 2005;270(271):13–7.

    Google Scholar 

  10. Behbehani GR, Mirzaie M. A high performance method for thermodynamic study on the binding of copper ion and glycine with Alzheimer’s amyloid β peptide. J Therm Anal Calorim. 2009;96:631–5.

    Article  Google Scholar 

  11. Pillot T, Goethals M, Vanloo B, Talussot C, Brasseur R, Vandekerckhove J, et al. Fusogenic properties of the C-terminal domain of the Alzheimer b-amyloid peptide. J Biol Chem. 1996;271:28757–65.

    Article  CAS  Google Scholar 

  12. Choo-Smith LP, Garzon-Rodriguez W, Glabe CG, Surewicz WK. Acceleration of amyloid fibril formation by specific binding of Ab-(1–40) peptide to ganglioside-containing membrane vesicles. J Biol Chem. 1997;272:22987–90.

    Article  CAS  Google Scholar 

  13. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3:205–14.

    Article  CAS  Google Scholar 

  14. Kaufer JN, Sorrentino J, Sitar D. Amyloid beta peptide membrane perturbation is the basis for its biological effects. Neurochem Res. 1999;24:1621–30.

    Article  Google Scholar 

  15. Ambroggio EE, Kim DH, Separovic F, Barrow CJ, Barnham KJ, Bagatolli LA, et al. Surface behavior and lipid interaction of Alzheimer β-amyloid peptide 1–42: a membrane-disrupting peptide. Biophys J. 2005;88:2706–13.

    Article  CAS  Google Scholar 

  16. Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):565–75.

    Article  CAS  Google Scholar 

  17. Murray IVJ, Sindoni ME, Axelsen PH. Promotion of oxidative lipid membrane damage by amyloid β proteins. Biochemistry. 2005;44(37):12606–13.

    Article  CAS  Google Scholar 

  18. Kevin J, Roberto C, Konrad B, Colin L, Hill M. Delineating common molecular mechanisms in Alzheimer's and prion diseases. Trends Biochem Sci. 2006;31(8):465–72.

    Article  Google Scholar 

  19. Mason RP, Trumbore MW, Pettegrew JW. Membrane interactions of a phosphomonoester elevated early in Alzheimer’s disease. Neurobiol Aging. 1995;16(4):531–9.

    Article  CAS  Google Scholar 

  20. Abramov AY, Canevari L, Duchen MR. Calcium signals induced by amyloid β peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta. 2004;1742:81–7.

    Article  CAS  Google Scholar 

  21. Terzi E, Holzemann G, Seeling J. Self-association of β-amyloid peptide (1–40) in solution and binding to lipid membranes. J Mol Biol. 1995;252:633–42.

    Article  CAS  Google Scholar 

  22. Kremer JJ, Sklansky DJ, Murphy RM. Profile of changes in lipid bilayer structure caused by β-amyloid peptide. Biochemistry 2001;40(29):8563–71.

    Article  CAS  Google Scholar 

  23. Alarco′n JM, Brito JA, Hermosilla T, Atwater I, Mears D, Rojas E. Ion channel formation by Alzheimer’s disease amyloid b-peptide (Ab40) in unilamellar liposomes is determined by anionic phospholipids. Peptides. 2006;27:95–104.

    Article  Google Scholar 

  24. Grasso D, Milardi D, La Rosa C, Rizzarelli E. DSC study of the interaction of the prion peptide PrP 106-126 with artifical membranes. New J Chem. 2001;25:1543–48.

    Article  CAS  Google Scholar 

  25. Gardikis K, Hatziantoniou S, Viras K, Demetzos C. Effect of a bioactive curcumin derivative on DPPC membrane: a DSC and Raman spectroscopy study. Thermochim Acta. 2006;447:1–4.

    Article  CAS  Google Scholar 

  26. Antunes-Madeira MC, Videira RA, Madeira VMC. Effects of parathion on membrane organization and its implications for the mechanisms of toxicity. Biochim Biophys Acta. 1994;1190:149–54.

    Article  CAS  Google Scholar 

  27. Gardikis K, Hatziantoniou S, Viras K, Wagner M, Demetzos C. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int J Pharm. 2006;318:118–23.

    Article  CAS  Google Scholar 

  28. Pentak D, Sulkowskil WW, Sulkowska A. Calorimetric and EPR studies of the thermotropic phase behavior of phospholipid membranes. J Therm Anal Calorim. 2008;93:471–7.

    Article  CAS  Google Scholar 

  29. Benseny-Cases N, Cocera M, Cladera J. Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation. Biochem Biophys Res Commun. 2007;361:916–21.

    Article  CAS  Google Scholar 

  30. Wang S, Beghem JP, Gradton E, Glasser M. Orientational distribution of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles as determined by global analysis of frequency domain fluorimetry data. Biochemistry. 1991;30:5565–72.

    Article  CAS  Google Scholar 

  31. Zannoni C, Arcioni A, Cavatora P. Fluorescence depolarisation in liquid crystals and membrane bilayers. Chem Phys Lipids. 1983;32:179–250.

    Article  CAS  Google Scholar 

  32. Moya-Quiles MR, Munoz DE, Vidal CJ. The pyrethroid insecticide deltamethrin modifies the thermotropic properties and lipid packing order of model membranes. Chem Phys Lipids. 1996;83:61–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by POL-POSTDOC III (PBZ/MniSW/07/2006/22) Nr D077/P01/2007, Ministry of Science and High education, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Ionov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionov, M., Klajnert, B., Gardikis, K. et al. Effect of amyloid beta peptides Aβ1–28 and Aβ25–40 on model lipid membranes. J Therm Anal Calorim 99, 741–747 (2010). https://doi.org/10.1007/s10973-009-0405-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0405-9

Keywords

Navigation