Skip to main content
Log in

Calorimetric and EPR studies of the thermotropic phase behavior of phospholipid membranes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Transmission electron micrographs (TEM) showed that liposome vesicles prepared from DL-α-phosphatidylcholine dimyristoyl (1,2-ditetradecanoyl-rac-glycerol-3-phosphocholine) (DMPC) by the modified reverse-phase evaporation method (mREV) were spherical in shape and in majority of them were less than 100 nm in diameter. Differential scanning calorimetry (DSC) method was used to determine the influence of cholesterol content and pH of Tris-HCl buffer used for the preparation of liposomes on the temperature of phase transition T C of phospholipids which form the investigated liposome vesicles. The use of DSC method made it possible to determine not only the temperature of the main phase transition of phospholipids but also the temperature of the phospholipid phase transition from the tilted gel phase(L β′) to the ripple gel phase(P β′). The results were compared with those obtained with EPR study. EPR study was carried out in the temperature range from 284 to 310 K i.e. below and above the phase transition temperature T C of DMPC. On the basis of EPR spectra of spin marker 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) incorporated into the liposome, the values of parameters f were determined. Hence TEMPO can be used to observe the change in partition between aqueous and fluid lipid regions. The change in the relative values of f determined for DMPC as a function of temperature shows that this phospholipid undergoes a transition from a ‘gel phase’ to a lamellar smectic liquid crystalline phase in the presence of excess water. The EPR study of TEMPO allowed us to determine the transition temperature T C. The results were compared with those obtained with DSC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Gomez-Hens and J. M. Fernandez-Romero, Trends Anal. Chem., 24 (2005) 9.

    Article  CAS  Google Scholar 

  2. M. Pappalardo and D. Milardi, J. Therm. Anal. Cal., 80 (2005) 413.

    Article  CAS  Google Scholar 

  3. H. Jamil and S. Sheikh, J. Am. Chem. Soc., (2004) 36.

  4. F. Frézard, Braz. J. Med. Biol. Res., 32 (1999) 181.

    Article  Google Scholar 

  5. D. D. Lasic, Trends Biotechnol., 16 (1998) 307.

    Article  CAS  Google Scholar 

  6. L. Coderch and J. Fonollosa, J. Control. Release, 68 (2000) 85.

    Article  CAS  Google Scholar 

  7. A. Lange and D. Marsh, Biochemistry, 24 (1985) 4383.

    Article  CAS  Google Scholar 

  8. E. A. Vishnyakova and A. E. Ruuge, Biochim. Biophys. Acta, 1467 (2000) 380.

    Article  CAS  Google Scholar 

  9. R. Katoch, Bioorg. Med. Chem., 7 (1999) 2753.

    Article  CAS  Google Scholar 

  10. F. Könczöl and N. Farkas, J. Therm. Anal. Cal., 82 (2005) 201.

    Article  Google Scholar 

  11. O. Dannenmuller and K. Arakawa, Chem. Eur. J., 6 (2000) 645.

    Article  CAS  Google Scholar 

  12. J. A. Urbina and E. Oldfield, Biochim. Biophys. Acta, 1238 (1995) 163.

    Article  Google Scholar 

  13. T. Pott and E. J. Dufourc, Biophys. J., 69 (1995) 1897.

    CAS  Google Scholar 

  14. I. J. Vereyken and V. Chupin, Biophys. J., 84 (2003) 3759.

    CAS  Google Scholar 

  15. B. R. Lentz and Y. Barenholz, Biochemistry, 15 (1976) 4521.

    Article  CAS  Google Scholar 

  16. B. R. Lentz and Y. Barenholz, Biochemistry, 15 (1976) 4529.

    Article  CAS  Google Scholar 

  17. F. Sixl and P. J. Brophy, Biochemistry, 23 (1984) 2032.

    Article  CAS  Google Scholar 

  18. I. Marcotte and E. J. Dufourc, Biophys. J., 85 (2003) 328.

    CAS  Google Scholar 

  19. F. B. Wendy and L.M. Ralph, Plant Physiol., 66 (1980) 835.

    Google Scholar 

  20. S. Tristram-Nagle and J. F. Nagle, Chem. Phys. Lipids, 127 (2004) 3.

    Article  CAS  Google Scholar 

  21. C. Wang and L. Huang, Biochemistry, 23 (1984) 4409.

    Article  CAS  Google Scholar 

  22. R. Saez and F. M. Goni, FEBS Lett., 179 (1985) 311.

    Article  CAS  Google Scholar 

  23. P. S. Uster and D. W. Deamer, Biochemistry, 24 (1985) 1.

    Article  CAS  Google Scholar 

  24. J. Wilschut and D. Papahadjopoulos, Biochemistry, 24 (1985) 8.

    Article  CAS  Google Scholar 

  25. S. Bhattacharya and S. De, Chem. Eur. J., 5 (1999) 2335.

    Article  CAS  Google Scholar 

  26. H. Ferreira and S. Reis, Anal. Biochem., 339 (2005) 144.

    Article  CAS  Google Scholar 

  27. W. W. Sułkowski, D. Pentak and A. Sułkowska, J. Mol. Struct., 744–747 (2005) 737.

    Article  CAS  Google Scholar 

  28. D. Papahadjopoulos and F. Szoka, Proc. Nat. Acad. Sci. USA, 75 (1978) 4194.

    Article  Google Scholar 

  29. A. Sułkowska, M. Kłoczko and W. Suł, J. Mol. Struct., 565–566 (2001) 209.

    Article  Google Scholar 

  30. W. W. Sułkowski, D. Pentak and A. Sułkowska, Spectrosc. Int. J., 19 (2005) 37.

    Google Scholar 

  31. W. W. Sułkowski, D. Pentak and A. Sułkowska, J. Mol. Struct., 792–793C (2006) 257.

    Article  CAS  Google Scholar 

  32. R. C. MacDonald and L.-R. Hu, Biochim. Biophys. Acta, 1061 (1991) 297.

    Article  CAS  Google Scholar 

  33. E. Urbán and A. Bóta, J. Therm. Anal. Cal., 82 (2005) 463.

    Article  CAS  Google Scholar 

  34. I. Hatta, J. Therm. Anal. Cal., 82 (2005) 189.

    Article  CAS  Google Scholar 

  35. M. Kozak and L. Domka, J. Therm. Anal. Cal., 88 (2007) 395.

    Article  CAS  Google Scholar 

  36. A. M. Smondyrev and M. L. Berkowitz, Biophys. J., 77 (1999) 2075.

    CAS  Google Scholar 

  37. S. Raffy and J. Teissie, Biophys. J., 76 (1999) 2072.

    CAS  Google Scholar 

  38. M. Pasenkiewicz-Gierula and T. Róg, Biophys. J., 78 (2000) 1376.

    Article  CAS  Google Scholar 

  39. St. H. Wu and H. M. McConnell, Biochemistry, 14 (1975) 847.

    Article  CAS  Google Scholar 

  40. D. Marsh and A. Watts, Biochemistry, 15 (1976) 3570.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. Sułkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pentak, D., Sułkowski, W.W. & Sułkowska, A. Calorimetric and EPR studies of the thermotropic phase behavior of phospholipid membranes. J Therm Anal Calorim 93, 471–477 (2008). https://doi.org/10.1007/s10973-007-8653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8653-z

Keywords

Navigation