Skip to main content
Log in

A general ultra large scale strategy for low temperature sol–gel synthesis of nearly monodispersed metal ions doped γ-Fe2O3 nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A general sol–gel strategy was established for the synthesis of metal ions doped γ-Fe2O3 nanoparticles with narrow particle size distribution. The unique chemistry of the route guarantees the simple preparation procedure for the preparation of doped γ-Fe2O3 nanoparticles, which includes the boiling of the ethanolic solution of precursor salts after the addition of gelation agent, and the following drying of the obtained sol solution. On the other hand, it guarantees the production of the nanoparticles with nearly monodispersed state and median size of about 5 nm on an ultra large scale of about 60 g in a single reaction. The doping of metal ions in γ-Fe2O3 allows the great promotion of phase transformation temperature from γ-Fe2O3 to α-Fe2O3. Due to the advantages of this strategy over other routes, it is very promising to be applied in the industrial production of undoped and doped γ-Fe2O3 nanoparticles as a general route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zayat M, Monte F, Morales MP, Rosa G, Guerrero H, Serna CJ, Levy D (2003) Adv Mater 15:1809

    Article  CAS  Google Scholar 

  2. Etgar L, Lifshitz E, Tannenbaum R (2007) J Phys Chem C 111:6238

    Article  CAS  Google Scholar 

  3. Sinha A, Chakraborty J, Rao V, European Patent EP1559118

  4. Billotey C, Wilhelm C, Devaud M, Bacrij C, Bittoun J, Gazeau F (2003) Magn Reson Med 49:646

    Article  CAS  Google Scholar 

  5. Chakrabarti S, Mandal SK, Haudhurim S (2005) Nanotechnology 16:06

    Article  Google Scholar 

  6. Nair SS, Mathews M, Joy PA, Kulkarni SD, Anantharaman MR (2004) J Magn Magn Mater 283:344

    Article  CAS  Google Scholar 

  7. Jing ZH (2006) Mater Lett 60 3315

  8. Jing ZH, Wang Y, Wu SH (2006) Sensor Actuat B 113:177

    Article  Google Scholar 

  9. Lai J, Shafi KVPM, Loos K, Ulman A, Lee Y, Vogt T, Estournès C (2003) J Am Chem Soc 125:11470

    Article  CAS  Google Scholar 

  10. Deka S, Joy PA (2007) J Mater Chem 17:453

    Article  CAS  Google Scholar 

  11. Ayub I, Berry FJ, Crabb E, Helgason Ö (2004) J Mater Sci 39:6921

    Article  CAS  Google Scholar 

  12. Wang HT, Hua NP, Du YK, Yang P (2005) Chem Res Appl 17:369

    CAS  Google Scholar 

  13. Ivanovskaya MI, Kotsikau DA, Taurino A, Siciliano P (2007) Sensor Actuat B 124133:142

    Google Scholar 

  14. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nature Mater 3:891

    Article  CAS  Google Scholar 

  15. Gnanaprakash G, Ayyappan S, Jayakumar T, Philip J, Raj B (2006) Nanotechnology 17:5851

    Article  CAS  Google Scholar 

  16. Narasimhan BRV, Prabhakar S, Manohar P, Gnanam FD (2002) Mater Lett 52:295

    Article  CAS  Google Scholar 

  17. Yusuf SM, Teresa JM, Mukadam MD, Kohlbrecher J, Ibarra MR, Arbiol J, Sharma P, Kulshreshtha SK (2006) Phys Rev B 74:224428

    Article  Google Scholar 

  18. Monte F, Morales MP, Levy D, Fernandez A, Ocaña M, Roig A, Molins E, O’Grady K, Serna CJ (1997) Langmuir 13:3627

    Article  Google Scholar 

  19. Rockenberger J, Scher EC, Alivisatos AP (1999) J Am Chem Soc 121:11595

    Article  CAS  Google Scholar 

  20. Hyeon T, Lee S, Park J, Chung Y, Na H (2001) J Am Chem Soc 123:12798

    Article  CAS  Google Scholar 

  21. Wang WH (2010) J Sol-Gel Sci Technol 54:37

    Article  Google Scholar 

  22. Cui HT, Ren WZ (2008) J Sol-Gel Sci Technol 47:81

    Article  CAS  Google Scholar 

  23. Ennas G, Marongiu G, Musinu A, Falqui A, Ballirano P, Caminiti R (1999) J Mater Res 14:1570

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (20971107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Ren, W. & Cui, H. A general ultra large scale strategy for low temperature sol–gel synthesis of nearly monodispersed metal ions doped γ-Fe2O3 nanoparticles. J Sol-Gel Sci Technol 58, 232–237 (2011). https://doi.org/10.1007/s10971-010-2382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2382-7

Keywords

Navigation