Skip to main content
Log in

Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The preparation of TiO2-coated polyester fabrics for purposes of photocatalytic water purification requires coating agents with crystalline TiO2 particles preferably in the anatase modification. The resulting coatings should exhibit a high water resistance and high photocatalytic activity according to reaction with structurally different dyestuffs. For this, the synthesis of anatase sols by hydrolysis of tetraisopropyltitanate in acidic medium under reflux was optimized. By precoating or addition of polymeric epoxysilanes a good adhesion on the polyester support could be realized. The photocatalytic activity was tested with different dyestuffs as: Methylene blue, Rhodamine B and the azo dyes AcidOrange 7 and C.I. Reactive red 158. The rate of photodestruction depends strongly on the type of used dye and its structure. Surprisingly, no differences in photodegradation were found in case of investigations with Rhodamine B, if the photoreaction is performed under exposure with UV or with visible light. A possible explanation of the similar behavior of photoreaction under different light sources could be a photodestruction by electron transfer from Rhodamine B to TiO2. Therefore, Rhodamine B seems to be generally not suitable for the evaluation of the photoactivity of TiO2 under irradiation with visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Appl Catal A 359:25

    Article  CAS  Google Scholar 

  2. Pandey A, Singh P, Iyengar L (2007) Int Biodeter Biodegr 59:73

    Article  CAS  Google Scholar 

  3. Whiteley CG (2007) Ind Bioprocess 29:7

    Google Scholar 

  4. Pazdzior K, Klepacz-Smolka A, Ledakowicz S, Sojka-Ledakowicz J, Mronzinska Z, Zylla R (2009) Chemosphere 75:250

    Article  CAS  PubMed  Google Scholar 

  5. Couto SR (2009) Biotechnol Adv 27:227

    Article  Google Scholar 

  6. Watanabe T (1993) Photocatalytic Purification and Treatment of Water and Air. Elsevier, New York

    Google Scholar 

  7. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  8. Herrmann J-M (1999) Catal Today 53:115

    Article  CAS  Google Scholar 

  9. Blanco-Galvez J, Fernández-Ibánez P, Malato-Rodriguez S (2007) J Solar Energy Eng 129:4

    Article  CAS  Google Scholar 

  10. Rauf MA, Ashraf SS (2009) Chem Eng J 151:10

    Article  CAS  Google Scholar 

  11. Rao KVS, Subrahmanyam M, Boule P (2004) Appl Catal B 49:239

    Article  CAS  Google Scholar 

  12. Daoud WA, Xin JH (2004) J Am Ceram Soc 87:953

    Article  CAS  Google Scholar 

  13. Bozzi A, Yuranova T, Guasaquillo I, Laub D, Kiwi J (2005) J Photochem Photobiol A 174:156

    Article  CAS  Google Scholar 

  14. Daoud WA, Xin JH, Zhang YH (2005) Surf Sci 599:69

    Article  CAS  ADS  Google Scholar 

  15. Qi K, Daoud WA, Xin JH, Mak CL, Tang W, Cheung WP (2006) J Mater Chem 16:4567

    Article  CAS  Google Scholar 

  16. Uddin MJ, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A (2007) Photochem Photobiol A 189:286

    Article  CAS  Google Scholar 

  17. Abidi N, Hequet E, Tarmala S, Dai LL (2007) J Appl Polym Sci 104:111

    Article  CAS  Google Scholar 

  18. Abidi N, Cabrales L, Hequet E (2009) Appl Mater Interface 1:2141

    Article  CAS  Google Scholar 

  19. Taranto J, Frochot D, Pichat P (2009) Separ Purif Technol 67:187

    Article  CAS  Google Scholar 

  20. Liuxue Z, Peng L, Zhixing S (2006) Mater Chem Phys 98:111

    Article  Google Scholar 

  21. Fu P, Luan Y, Dai X (2004) J Mol Catal A 221:81

    Article  CAS  Google Scholar 

  22. Herbig B, Löbmann P (2004) J Photochem Photobiol A 163:359

    Article  CAS  Google Scholar 

  23. Robert D, Piscopo A, Heintz O, Weber JV (1999) Catal Today 54:291

    Article  CAS  Google Scholar 

  24. Yu H, Lee SC, Ao CH, Yu J (2005) J Cryst Growth 280:612

    Article  CAS  ADS  Google Scholar 

  25. Danion A, Bordes C, Disdier J, Gauvrit J-Y, Guillard C, Lanteri P, Jaffrezic-Renault N (2004) J Photochem Photobiol A 168:161

    Article  CAS  Google Scholar 

  26. Ishikawa T (2006) Adv Sci Technol 45:2118

    Article  CAS  MathSciNet  Google Scholar 

  27. Kaur S, Gopal R, Ng WJ, Ramakrishna S, Matsuura T (2008) MRS Bull 33:21

    CAS  Google Scholar 

  28. Van Gerven T, Mul G, Moulijn J, Stankiewicz A (2007) Chem Eng Process 46:781

    Article  Google Scholar 

  29. Yun YJ, Chung JS, Kim S, Hahn SH, Kim EJ (2004) Mater Lett 58:3703

    Article  CAS  Google Scholar 

  30. Mahltig B, Gutmann E, Meyer D, Reibold M, Dresler B, Günther K, Faßler D, Böttcher H (2007) J Mater Chem 17:2367

    Article  CAS  Google Scholar 

  31. Zille A, Ramalho P, Tzanov T, Millward R, Aires V, Cardoso MH, Ramalho MT, Gübitz GM, Cavaco-Paulo A (2004) Biotechnol Progr 20:1588

    Article  CAS  Google Scholar 

  32. Becker HGO (ed) (1991) Einführung in die Photochemie. Deutscher Verlag der Wissenschaft, Berlin

    Google Scholar 

  33. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33

    Article  CAS  Google Scholar 

  34. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  PubMed  Google Scholar 

  35. Liu G, Wang L, Wang HG, Cheng H-M, Lu GQ (2010) J Mater Chem 20:831

    Article  Google Scholar 

  36. Khataee AR, Aleboyeh H, Aleboyeh A (2009) J Exp Nanosci 4:121

    Article  CAS  Google Scholar 

  37. Yang J-H, Han Y-S, Choi J-H (2006) Thin Solid Films 495:266

    Article  CAS  ADS  Google Scholar 

  38. Han S, Choi S-H, Kim S-S, Cho M, Jang B, Kim D-Y, Yoon J (2005) Small 1:812

    Article  CAS  PubMed  Google Scholar 

  39. Watson S, Beydoun D, Scott J, Amal R (2004) J Nanoparticle Res 6:193

    Article  CAS  Google Scholar 

  40. Qi K, Chen X, Liu Y, Xin JH, Mak CL, Daoud WA (2007) J Mater Chem 17:3504

    Article  CAS  Google Scholar 

  41. [41] Daoud WA, Xin JH (2005) Chem Commun 2110

  42. Nolph CA, Sievers DE, Kaewgun S, Kucera CJ, McKinney DH, Rientjes JP, White JL, Bhave R, Lee BI (2007) Catal Lett 117:102

    Article  CAS  Google Scholar 

  43. Jolivet J-P, Cassaignon S, Chaneac C, Chiche D, Tronc E (2008) J Sol Gel Sci Technol 46:299

    Article  CAS  Google Scholar 

  44. Salinero A, Emeline AV, Zhao J, Hidaka H, Ryabchuk VK, Serpone N (1999) Pure & Appl Chem 71:321

    Article  Google Scholar 

  45. Nakamura K, Yamaoka T, Nagatsuka T, Taga Y (2009) J Adv Oxid Techn 12:122

    CAS  Google Scholar 

  46. Balasubramanian G, Dionysiou DD, Suidan MT, Baudin I, Laıné J-M (2004) Appl Catal B Environ 47:73

    Article  CAS  Google Scholar 

  47. Medina-Valtierra J, Garcia-Servin J, Frausto-Reyes C, Calixto S (2006) Appl Surf Sci 252:3600

    Article  CAS  ADS  Google Scholar 

  48. Risse G, Matys S, Böttcher H (2008) Appl Surf Sci 254:5994

    Article  CAS  ADS  Google Scholar 

  49. A publication about the comparison between variants (i)–(iii) is in preparation and will be submitted to J Sol-Gel Sci Technol

  50. Sójka-Ledakowicz J, Lewartowska J, Kudzin M, Leonowicz M, Jesionowski T, Siwińska-Stefańska K, Krysztafkiewicz A (2009) J Mater Sci 44:3852

    Article  ADS  Google Scholar 

  51. Nelson ML, Rousselle M-A (1973) Textile Res J 43:218

    Article  CAS  Google Scholar 

  52. Xie Y, Krause A, Mai C, Militz H, Richter K, Urban K, Evans PD (2005) Polym Degrad Stab 89:189

    Article  CAS  Google Scholar 

  53. Albareda-Sirvent M, Merkoci A, Alegret S (2001) Anal Chim Acta 442:35

    Article  CAS  Google Scholar 

  54. Farrell JR, Iles PJ, Dimitrakopoulos T (1996) Anal Chim Acta 334:133

    Article  CAS  Google Scholar 

  55. Fouda MMG, Wittke R, Knittel D, Schollmeyer E (2009) Int J Diabetes Mellitus 1:61

    Article  Google Scholar 

  56. Rupp S, von Schickfus M, Hunklinger S, Eipel H, Priebe A, Enders D, Pucci A (2008) Sens Actuators B Chem 134:225

    Article  Google Scholar 

  57. Celikbilek C, Akovali G, Kaynak C (2004) Polym Bull 51:429

    Article  CAS  Google Scholar 

  58. Qian M, Soutar AM, Tan XH, Zeng XT, Wijesinghe SL (2009) Thin Solid Films 517:5237

    Article  CAS  Google Scholar 

  59. Sakai N, Ebina Y, Takada K, Sasaki T (2004) J Amer Chem Soc 126:5851

    Article  CAS  Google Scholar 

  60. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2002) Appl Catal B Environ 39:75

    Article  CAS  Google Scholar 

  61. Song X-M, Wu J-M, Yan M (2009) Thin Solid Films 517:4341

    Article  CAS  ADS  Google Scholar 

  62. Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) J Phys Chem B 102:5845

    Article  CAS  Google Scholar 

  63. Qu P, Zhao J, Shen T, Hidaka H (1998) J Mol Catal A Chem 129:257

    Article  CAS  Google Scholar 

  64. Li J, Ma W, Lei P, Zhao J (2007) J Environ Sci 19:892

    Article  CAS  Google Scholar 

  65. Kathiravan A, Anbazhagan V, Asha Jhonsi M, Renganathan R (2007) Z Phys Chem 221:941

    CAS  Google Scholar 

  66. Xiahong W, Peibo S, Huiling L, Lili Q (2009) J Rare Earths 27:739

    Article  Google Scholar 

  67. Li R, Lu X, Zhang J (2009) J Nanosci Nanotechn 9:1

    Article  CAS  Google Scholar 

  68. Libanori R, Girali TR, Longo E, Leite ER, Ribeiro C (2009) J Sol Gel Sci Technol 49:95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Dirk C. Meyer and Dipl.-Phys. Emanuel Gutmann, Technische Universität Dresden, Institut für Strukturphysik, for the WAXS measurements, and the Evonik Tego Chemie GmbH Essen for the sampling of actual epoxysilanes. For help with determination of redox potentials the authors owe thanks to Dr. A. Bund (Technische Universität Dresden, Department of Electrochemistry). The work was supported by the German Federal Ministry for Economics and Labour, program InnoNet, project 16IN0565.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Böttcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, H., Mahltig, B., Sarsour, J. et al. Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics. J Sol-Gel Sci Technol 55, 177–185 (2010). https://doi.org/10.1007/s10971-010-2230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2230-9

Keywords

Navigation