Skip to main content
Log in

Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The synthesis of nanostructured magnetic materials has been intensively researched because of their large field of applications as magnetic carriers in drug targeting, hyperthermia in tumor treatment, among others. Much effort has been invested in magnetic nanoparticles for bioapplications. However, as these nanoparticles present high specific surface area, unprotected nanoparticles can easily form aggregates and react with oxygen in the air. They can also rapidly biodegrade when directly exposed to biological systems. In this context, we have explored the possibility of synthesizing a mesoporous SiO2–Fe3O4 nanocomposite and its AC magnetic-field-induced heating properties. The magnetite nanocomposite was obtained by impregnation of an iron precursor into a silica framework. The proposed method involves the preparation of an iron oxide precursor in ethanol and the subsequent impregnation of SBA-15 mesoporous hexagonal silica. Iron oxide was formed inside the porous structure, thus producing the magnetic device. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), N2 adsorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Measurements of AC magnetic-field-induced heating properties of the obtained nanocomposite, both of the solid form and in aqueous solution, under different applied magnetic fields showed that it is suitable as a hyperthermia agent for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sem T (2009) J Magn Magn Mater 284:145–160

    Article  ADS  Google Scholar 

  2. Azzazy HME, Mansour MMH (2009) Clinica Chimica Acta 403:1–8

    Article  CAS  Google Scholar 

  3. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) J Am Chem Soc 128:7383–7389

    Article  CAS  PubMed  Google Scholar 

  4. Kim TW, Chung PW, Slowing II, Tsunoda M, Yeung ES, Lin VSY (2008) Nano Lett 8:3724–3727

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M (2009) Adv Mater 21:1354–1357

    Article  CAS  Google Scholar 

  6. He YP, Wang SQ, Li CR, Miao YM, Wu ZY, Zou BS (2005) J Phys D-Appl Phys 38:1342–1350

    Article  CAS  ADS  Google Scholar 

  7. Chastellain M, Petri A, Gupta A, Rao KV, Hofman H (2004) Adv Eng Mater 6:235–241

    Article  CAS  Google Scholar 

  8. Julián-López B, Boissière C, Chanéac C, Grosso D, Vasseur S, Miraux S, Duguet E, Sanchez C (2007) J Mater Chem 17:1563–1569

    Article  Google Scholar 

  9. Le Renard P-E, Buchegger F, Petri-Fink A, Bosman F, Rüfenacht D, Hofmann H, Doelker E, Jordan O (2009) Int J Hyperth 25:229–239

    Article  CAS  Google Scholar 

  10. Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC (2005) Nanotechnology 16:1221–1233

    Article  CAS  ADS  Google Scholar 

  11. Zhu Y, Wu Q (1999) J Nanopart Res 1:393–396

    Article  CAS  Google Scholar 

  12. Konishi Y, Nomura T, Mizoe K (2004) Hydrometallurgy 74:57–65

    Article  CAS  Google Scholar 

  13. Liu ZL, Wang X (2004) J Mater Sci 39:2633–2636

    Article  CAS  ADS  Google Scholar 

  14. Franger S, Berthet P, Berthon J (2004) J Solid State Electrochem 8:218–223

    Article  CAS  Google Scholar 

  15. Gun’ko YK, Pillai SC, Mcinerney D (2001) J Mater Sci Mater Electron 12:299–302

    Article  Google Scholar 

  16. Wu M, Xiong Y, Jia Y, Niu H, Qi H, Ye J, Chen Q (2005) Chem Phys Lett 401:374–379

    Article  CAS  ADS  Google Scholar 

  17. Khollam YB, Dhage SR, Potdar HS, Deshpande SB, Bakare PP, Kulkarni SD, Date SK (2002) Mater Lett 56:571–577

    CAS  Google Scholar 

  18. Zhang Z, Zhang L, Chen L, Chen L, Wan QH (2006) Biotechnol Prog 22:514–518

    Article  CAS  PubMed  Google Scholar 

  19. Zhao DL, Zeng XW, Xia QS, Tang JT (2009) J Alloys Compd 469:215–218

    Article  CAS  Google Scholar 

  20. Wu JH, Ko SP, Liu HL, Jung MH, Lee JH, Ju JS, Kim YK (2008) Coll Surf A Physicochem Eng Aspects 313–314:268–272

    Article  Google Scholar 

  21. Franger S, Berthet P, Dragos O, Baddour-Hadjean R, Bonville P, Berthon J (2007) J Nanoparticle Res 9:389–402

    Article  CAS  Google Scholar 

  22. Souza KC, Ardisson JD, Sousa EMB (2009) J Mater Sci Mater Med 20:507–512

    Article  CAS  PubMed  Google Scholar 

  23. Sousa A, Souza KC, Reis SC, Sousa RG, Windmöller D, Machado JC, Sousa EMB (2008) J Non-Cryst Solids 354:4800–4805

    Article  CAS  ADS  Google Scholar 

  24. Sousa A, Sousa EMB (2005) Arquivos de Biologia e Tecnologia 48:243–250

    Google Scholar 

  25. Souza KC, Salazar-Alvarez G, Ardisson JD, Macedo WAA, Sousa EMB (2008) Nanotechnology 19:185603 (7 pp)

    Article  ADS  Google Scholar 

  26. Alvaro M, Aprile C, Garcia H, Gómez-García CJ (2006) Adv Funct Mater 16:1543–1548

    Article  CAS  Google Scholar 

  27. Ma Z, Guan Y, Liu H (2006) J Magn Magn Mater 301:469–477

    Article  CAS  ADS  Google Scholar 

  28. Chen FH, Gao Q, Ni JZ (2008) Nanotechnology 19:165103 (9 pp)

    Article  ADS  Google Scholar 

  29. Guo H, Zhang X, Cui MH, Sharma R, Yang NL, Akins DL (2005) Mater Res Bull 40:1713–1725

    Article  CAS  Google Scholar 

  30. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  ADS  Google Scholar 

  31. Coey JMD, Cugat O, Mccauley J, Fabris JD (1992) Revista de Física Aplicada e Instrumentação 7:25–30

    Google Scholar 

  32. Holmes SM, Zholobenko VL, Thursfield A, Plaisted RJ, Cundy CS, Dwyer J (1998) J Chem Soc, Faraday Trans 94:2025–2032

    Article  CAS  Google Scholar 

  33. Berubé F, Kaliaguine S (2008) Microporous Mesoporous Mater 115:469–479

    Article  Google Scholar 

  34. Arruebo M, Galán M, Navascués N, Téllez C, Marquina C, Ibarra MR, Santamaría J (2006) Chem Mater 18:1911–1919

    Article  CAS  Google Scholar 

  35. Birsan C, Predoi D, Andronescu E (2007) J Optoelectron Adv Mater 9:1821–1824

    CAS  Google Scholar 

  36. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Du Y, Liu S, Ji Y, Zhang Y, Liu F, Gao Q, Xiao FS (2008) Catal Today 131:70–75

    Article  CAS  Google Scholar 

  38. Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) J Magn Magn Mater 320:2390–2396

    Article  CAS  ADS  Google Scholar 

  39. Bae S, Lee SW, Hirukawa A, Takemura Y, Jo YH, Lee SG (2009) IEEE Trans Nanotechnol 8:86–94

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by CAPES, CNPq, FAPEMIG and LNLS (Campinas, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edésia M. B. Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, K.C., Mohallem, N.D.S. & Sousa, E.M.B. Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia. J Sol-Gel Sci Technol 53, 418–427 (2010). https://doi.org/10.1007/s10971-009-2115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2115-y

Keywords

Navigation