Skip to main content
Log in

Sol–gel synthesis and characterization of polycrystalline GdFeO3 and Gd3Fe5O12 thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Thin films of the perovskite and garnet structured gadolinium ferrites GdFeO3 and Gd3Fe5O12 have been synthesized by a sol–gel method, based on stoichiometric mixtures of acetyl acetone chelated Gd3+ and Fe3+ dissolved in 2-methoxy ethanol. After spin coating onto Si wafers, and heating in air at 700 °C for 20 h, neatly grown essentially single phase films were obtained. From X-ray photoelectron spectroscopy an iron deficiency is observed in the uppermost layer of both films, implying that the crystallites preferably end in planes rich in Gd and O but not in Fe. The films were also characterized by X-ray powder diffraction, scanning electron microscopy, infrared spectroscopy, and magnetic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Geller S, Wood EA (1956) Acta Crystallogr 9:563. doi:10.1107/S0365110X56001571

    Article  CAS  Google Scholar 

  2. Dzyaloshinsky I (1958) J Phys Chem Solids 4:241. doi:10.1016/0022-3697(58)90076-3

    Article  ADS  CAS  Google Scholar 

  3. Nikolov O, Hall I, Barilo SN, Mukhin AA (1996) J Magn Magn Mater 152:75. doi:10.1016/0304-8853(95)00448-3

    Article  ADS  CAS  Google Scholar 

  4. Niu XS, Du WM, Du WP (2004) Sens Actuators B Chem 99:399. doi:10.1016/j.snb.2003.12.006

    Article  Google Scholar 

  5. Sivakumar M, Gedanken A, Bhattacharya D et al (2004) Chem Mater 16:3623. doi:10.1021/cm049345x

    Article  CAS  Google Scholar 

  6. Mathur S, Shen H, Lecerf N et al (2002) Adv Mater 14:1405. doi:10.1002/1521-4095(20021002)14:19<1405::AID-ADMA1405>3.0.CO;2-B

    Article  CAS  Google Scholar 

  7. Chavan SV, Tyagi AK (2005) J Mater Res 20:2654. doi:10.1557/JMR.2005.0337

    Article  ADS  CAS  Google Scholar 

  8. Söderlind F, Fortin MA, Petoral RM Jr et al (2008) Nanotechnology 19:085608. doi:10.1088/0957-4484/19/8/085608

    Article  ADS  Google Scholar 

  9. Bertaut F, Forrat F (1956) Compt Rend 242:382

    CAS  Google Scholar 

  10. Weidenborner JE (1961) Acta Crystallogr 14:1051. doi:10.1107/S0365110X6100303X

    Article  CAS  Google Scholar 

  11. Anderson EE, Cunningham JR Jr, McDuffie GE (1959) Phys Rev 16:624. doi:10.1103/PhysRev.116.624

    Article  ADS  Google Scholar 

  12. Pauthenet R, Blum P (1954) Compt Rend 239:33

    CAS  Google Scholar 

  13. Pauthenet R (1956) Compt Rend 242:1859

    CAS  Google Scholar 

  14. Pauthenet R (1956) Compt Rend 243:1737

    CAS  Google Scholar 

  15. Néel L (1954) Compt Rend 239:8

    Google Scholar 

  16. Giess EA, Potemski RM (1967) IBM Tech Disclosure Bull 9:960

    Google Scholar 

  17. Baratto C, Lottici PP, Bersani D et al (1998) J Sol–Gel Sci Technol 13:667. doi:10.1023/A:1008694519106

    Article  CAS  Google Scholar 

  18. Ross NL, Zhao J, Angel RJ (2004) J Solid State Chem 177:3768. doi:10.1016/j.jssc.2004.07.002

    Article  ADS  CAS  Google Scholar 

  19. Hofmeister AM, Campbell KR (1992) J Appl Phys 72:638. doi:10.1063/1.351846

    Article  ADS  CAS  Google Scholar 

  20. Venugopalan S, Becker MM (1990) J Chem Phys 93:3833. doi:10.1063/1.458768

    Article  ADS  CAS  Google Scholar 

  21. McDevitt NT (1969) J Opt Soc Am 59:1240

    Article  ADS  CAS  Google Scholar 

  22. Aono H, Traversa E, Sakamoto M, Sadaoka Y (2003) Sens Actuators B Chem 94:132. doi:10.1016/S0925-4005(03)00328-9

    Article  Google Scholar 

  23. Petrović S, Terlecki-Baričević A, Karanović L et al (2008) Appl Catal B 79:186

    Article  Google Scholar 

  24. Graat PCJ, Somers MAJ (1996) Appl Surf Sci 100/101:36. doi:10.1016/0169-4332(96)00252-8

    Article  ADS  CAS  Google Scholar 

  25. Söderlind F, Pedersen H, Petoral RM Jr et al (2005) J Colloid Interface Sci 288:140. doi:10.1016/j.jcis.2005.02.089

    Article  PubMed  Google Scholar 

  26. Bozorth RM, Williams HJ, Walsh DE (1956) Phys Rev 103:572. doi:10.1103/PhysRev.103.572

    Article  ADS  CAS  Google Scholar 

  27. Ogo Y, Yanagi H, Kamiya T et al (2007) J Appl Phys 101:103714. doi:10.1063/1.2734953

    Article  ADS  Google Scholar 

  28. Giess EA, Potemski RM (1967) IBM Tech Disclosure Bull 10:852

    Google Scholar 

  29. Oron M, Barlow I, Traber WF (1969) J Mater Sci 4:271. doi:10.1007/BF00549928

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Andreas Gällström and Anne Henry at the Material Physics division at IFM, Linköping University, for their help with the FT-IR reflectance measurements. The present work is financed by the Swedish Foundation for Strategic Research (SSF) within the Nano-X programme (Grant No. SSF [A3 05:204]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Söderlind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söderlind, F., Selegård, L., Nordblad, P. et al. Sol–gel synthesis and characterization of polycrystalline GdFeO3 and Gd3Fe5O12 thin films. J Sol-Gel Sci Technol 49, 253–259 (2009). https://doi.org/10.1007/s10971-008-1859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1859-0

Keywords

Navigation