Skip to main content
Log in

Immobilization of invertase in germania matrix and a study of its enzymatic activity

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Invertase from baker yeast was entrapped within germania nanospheres. The enzyme was incorporated simultaneously during the precipitation of germania using the peptide sequence T-G-H-Q-S-P-G-A-Y-A-A-H that is known to catalyze the formation of germania. The efficiency of immobilization and its activity under different conditions, operation and storage stability were studied. The enzyme was entrapped efficiently and was found to be stable and retained activity over a longer period of time compared to that of the free enzyme in solution. The effect of temperature and pH on the activity of the enzyme showed that the entrapped enzyme remained stable and active over a temperature range of 15–65 °C. Optimum activity of the immobilized invertase was found to be at 60 °C. In addition, the immobilized enzyme remained active over a broader pH range (4.5–6.5). Thus germania nanospheres can efficiently immobilize enzymes and remain stable over a range of temperatures. Such immobilization techniques protect the enzyme from harsh environments required during chemical synthesis and functionalization methods. The ability to trap biomolecules such as enzymes in germania nanospheres gives rise to a new class of materials with a variety of applications such as biosensors and bioactive glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomas JM, Raja R (2005) Ann Rev Mater Res 35:315

    Article  CAS  Google Scholar 

  2. Mulchandani A, Mulchandani P, Chen W (1998) Field Anal Chem Tech 2:363

    Article  CAS  Google Scholar 

  3. McCafferty J, Jackson RH, Chiswell DJ (1991) Protein Eng Des Selec 4:955

    Article  CAS  Google Scholar 

  4. (a) Rohm I, Genrich M, Collier W, Bilitewski U (1996) The Analyst 121:877; (b) Avnir D (1995) Acc Chem Res 28:328; (c) Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605

  5. van Beilen JB, Li Z (2002) Curr Opin Biotechnol 13:338

    Article  CAS  Google Scholar 

  6. McNeil CJ, Athey D, Ho WO (1995) Biosens Bioelectron 10:75

    Article  CAS  Google Scholar 

  7. Wada H, Imamura I, Sako M, Katagiri S, Tarui S, Nishimura H, Inada Y (1990) Ann NY Acad Sci 613:95

    Article  CAS  Google Scholar 

  8. Callegaro L, Denti E (1983) Int J Artif Orgns Suppl 1:107

    Google Scholar 

  9. Hoffman AS (1990) Biomater Artif Cells Artif Orgns 18:523

    CAS  Google Scholar 

  10. Angelova N, Hunkeler D (1999) Trends Biotechnol 17:409

    Article  CAS  Google Scholar 

  11. (a) Chen Y, Kang ET, Neoh KG, Tan KL (2000) Eur Polym J 36:2095; (b) Selampinar F, Akbulut U, Ozden MY, Toppare L (1997) Biomater 18:1163; (c) Corma A, Fornes V, Rey F (2002) Adv Mater 14:71; (d) Corma A, Fornés V, Jordá JL, Rey F, Fernandez-Lafuente R, Guisan JM, Mateo C (2001) Chem Commun 419 (e) Bartlett P, Tebbutt P, Tyrrell CH (1992) Anal Chem 64:138; (f) Narang U, Prasad PN, Bright FV, Ramanathan K, Kumar ND, Malhotra BD, Kamalasanan M, Chandra S (1994) Anal Chem 66:3139

  12. Liu Z, Zhang J, Chen X, Wang PG (2002) Chem Biochem 3:348

    CAS  Google Scholar 

  13. Kosugi Y, Tanaka H, Tomizuka N (1990) Biotechnol Bioeng 36:617

    Article  CAS  Google Scholar 

  14. Vilmaminovska, Winkelhausen E, Slobodankakuzmanova (2005) J Serb Chem Soc 70:609

    Article  Google Scholar 

  15. Sotiropoulou S, Chaniotakis NA (2003) Anal Bioanal Chem 375:103

    CAS  Google Scholar 

  16. Yu T, Zhang Y, You C, Zhuang J, Wang B, Liu B, Kang Y, Tang Y (2006) Chem Eur J 12:1137

    Article  CAS  Google Scholar 

  17. Wang ZG , Xu ZK, Wan LS, Wu J, Innocent C, Seta P (2006) Macromol Rapid Commun 27:516

    Article  CAS  Google Scholar 

  18. Phadtare S, Vinod VP, Mukhopadhyay K, Kumar A, Rao M, Chaudhari RV, Sastry M (2004) Biotechnol Bioeng 85:629

    Article  CAS  Google Scholar 

  19. Huang SH, Liao MH, Chen DH (2003) Biotechnol Prog 19:1095

    Article  CAS  Google Scholar 

  20. (a) Yu L, Banerjee IA, Gao X, Nuraje N, Matsui H (2005) Bioconj Chem 16:1484; (b) Ding H, Wen L, Chen J (2004) Chin Particul 2:270

  21. Chaniotakis NA (2003) Anal Bioanal Chem 378:89

    Article  CAS  Google Scholar 

  22. Bower C, Xu Q, McGuire J (1998) Biotechnol Bioeng 58:662

    Article  Google Scholar 

  23. Gimon-Kinsel ME, Jimenez VL, Washmon L, Balkus KL (1998) In: Bonneviot L, Beland F, Danumah C, Giasson S, Kailaguine S (eds) Mesoporous Molecular Sieves. Elsevier, Amsterdam

    Google Scholar 

  24. Sun J, Zhang H, Tian R, Ma D, Bao X, Su D, Zou H (2006) Chem Commun 1332

  25. (a) Goradia D, Cooney J, Honet BK, Magner E (2005) J Mol Cat B: Enzymatic 32:231; (b) Wang Y, Caruso F (2004) Chem Commun 1528

  26. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2000) Chem Mater 12:3301

    Article  CAS  Google Scholar 

  27. Tortajada M, Ramón D, Beltrán D, Amorós P (2005) J Mater Chem 15:3859

    Article  CAS  Google Scholar 

  28. Gavalas VG, Chaniotakis NA (2000) Anal Chim Acta 404:67

    Article  CAS  Google Scholar 

  29. Sotiropoulou S, Vamvakaki V, Chaniotakis NA (2005) Biosens Bioelectron 20:1674

    Article  CAS  Google Scholar 

  30. Kizilyar N, Akbulut U, Toppare L, Ozden MY, Yagci Y (1999) Synth Met 104:45

    Article  CAS  Google Scholar 

  31. Monsan P, Combes O (1984) Biotechnol Bioeng 26:347

    Article  CAS  Google Scholar 

  32. Akbulut U, Sungur S, Pekyardimci S (1991) Macromol Rep A 28:239

    Article  Google Scholar 

  33. Marek M, Valentova O, Kas J (1984) Biotechnol Bioeng 26:1223

    Article  CAS  Google Scholar 

  34. Neagu E, Teodor E, Radu GL, Nechifor AC, Nechifor GH (2005) Rom Bio Sci 3:1

    Google Scholar 

  35. Queiroz AA, Vitolo M, Oliveira RC, Higa OZ (1996) Radiat Phys Chem 47:873

    Article  Google Scholar 

  36. Selmiye A, Toppare L, Yagci Y, Hepuzer Y (1999) J Biomater Sci Polym Ed 10:1223

    Google Scholar 

  37. Laurinavicyus VA, Kulys YY (1977) Appl Biochem Microbiol 13:346

    Google Scholar 

  38. Regan MR, Banerjee IA (2006) Scripta Mater 54:909

    Article  CAS  Google Scholar 

  39. Margayan A, Piliavin MA (1993) Germanate glasses: structure, spectroscopy, and properties. Artech House, London

    Google Scholar 

  40. Zou X, Conradsson T, Klingstedt M, Dadachov MS, O’Keeffe M (2005) Nature 437:716

    Article  CAS  Google Scholar 

  41. Krishna M, Hill H (1965) J Am Ceram Soc 48:109

    Google Scholar 

  42. Takeda I, Yoshie K (2002) US Patent Application 2000-638617

  43. Dickerson MB, Naik RR, Stone MO, Cai Y, Sandhage KH (2004) Chem Commun 1776

  44. Miller GL (1959) Anal Chem 31:426

    Article  CAS  Google Scholar 

  45. (a) Simpson TL, Volcani BE (ed) (1981) Silecious structures in biological systems. Springer, New York (b) Livage J, Coradin T, Roux C (2001) J Phys: Condens Matter 13:R673 (c) Robinson DH, Sullivan CW (1987) Trends Biochem Sci 12:151; (d) Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Nature Biotechnol 22:211

  46. Brunauer S, Deming LS, Deming WS, Teller E (1940) J Am Chem Soc 62:1723

    Article  CAS  Google Scholar 

  47. Regan MR, Banerjee IA (2007) Mater Lett 61:71

    Article  CAS  Google Scholar 

  48. (a) Gomez L, Villalonga R (2000) Biotechnol Lett 22(14):1191; (b) David AE, Wang NS, Yang VC, Yang AJ (2006) J Biotechnol 125(3):395 (c) Basha S, Palanivelu P (1998) World J Microbiol Biotechnol 14:603

  49. (a) Kudryashova EV, Gladilin AK, Vakurov AV, Heitz F, Levashov AV, Mozhaev VV (1997) Biotechnol Bioeng 55:267; (b) Mattison KW, Brittain IJ, Dubin PL (1995) Biotechnol Prog 11:632; (c) Marchesseau S, Gastaldi E, Lagaude A, Cuq J-L (1997) J Dairy Sci 80:1483; (d) Banerjee IA, Yu L, Matsui H (2003) Proc Natl Acad Sci USA 100(25):14678; (e) Wang Y, Caruso F (2005) Chem Mater 17:953

  50. Nakane K, Ogihara T, Ogata N, Kurokawa Y (2001) J Appl Polym Sci 81:2084

    Article  CAS  Google Scholar 

  51. Gill I, Ballesteros A (1998) J Am Chem Soc 120:8587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fordham University Faculty Research Grant. The authors thank Dr. Areti Tsiola and Dr. Karl Fath at the Queens College Core Facilities for Molecular Imaging for the use of the transmission electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita A. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regan, M.R., Banerjee, I.A. Immobilization of invertase in germania matrix and a study of its enzymatic activity. J Sol-Gel Sci Technol 43, 27–33 (2007). https://doi.org/10.1007/s10971-007-1577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1577-z

Keywords

Navigation