Skip to main content
Log in

Preparation and characterization of magnetic nanoparticles embedded in hydrogels for protein purification and metal extraction

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The present work involves the development of hydrogel magnetic nanocomposites for protein purification and heavy metal extraction applications. The magnetic nanoparticles (MNPs) were prepared in situ in poly(acrylamide)-gum acacia (PAM-GA) hydrogels. The formation of magnetic nanoparticles in the hydrogel networks was confirmed by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Scanning electron (SEM) microscopy studies revealed the formation of MNPs throughout the hydrogel networks. The average size of MNPs formed in the hydrogel networks was 3–5 nm as determined by transmission electron microscopy (TEM). The thermal properties of the hydrogel magnetic nanocomposites were evaluated by dynamic scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The magnetic properties of the developed hydrogel magnetic nanocomposites were determined by a vibrating sample magnetometer (VSM). The swelling properties of the hydrogel and the hydrogel magnetic nanocomposites were studied in detail. The hydrogel magnetic nanocomposites are utilized for the removal of toxic metal ions such as Co(II), Ni(II), and Cu(II) and for protein purification. The results confirm that the hydrogel magnetic nanocomposites exhibit superior extraction properties to hydrogels.

Poly(acrylamide)-gum acacia (PAM-GA) magnetic nanocomposite hydrogels were synthesized to evaluate their applicability for protein purification and metal extraction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Burda C, Chen XB, Narayana R, Sayed EI (2005) Chemi Revie 105:1025. doi:10.1002/chin.200527215

    Article  CAS  Google Scholar 

  2. Kim BJ, Bang J, Hawker ET, Krammer EJ (2006) Macromolecules 39:4108. doi:10.1021/ma060308w

    Article  CAS  Google Scholar 

  3. Kim DH, Kim SH, Lavery K, Russell TP (2004) Nano Lett 4:1841. doi:10.1021/nl049063w

    Article  CAS  Google Scholar 

  4. Kim HC, Jia XO, Stafford CM, Kim DH, Mccarthy TJ, Tuominen M (2001) Adv Mater 13:795. doi:10.1002/1521-4095(200106)13:11<795::AIDADMA795>3.0.CO;2-1

    Article  CAS  Google Scholar 

  5. Lazzari M, Quintela MAL (2003) Adv Mater 159:1583. doi:10.1002/adma.200300382

    Article  Google Scholar 

  6. Yeh SW, Wu TL, Wei KH (2005) Nanotechnology 16:683. doi:10.1088/0957-4484/16/6/010

    Article  CAS  Google Scholar 

  7. Jang SH, Jeonga GY, Mina BG, Lyoob WS, Lee SC (2008) J Hazard Mater 159:294. doi:10.1016/j.jhazmat.2008.02.018

    Article  CAS  Google Scholar 

  8. Zhou L, Wang Y, Liu Z, Haung Q (2009) J Hazard Mater 161:995. doi:10.1016/j.jhazmat.2008.04.078

    Article  CAS  Google Scholar 

  9. Zhou YT, Nie HL, White GB, He ZY, Zhu LM (2009) J Colloid Interface Sci 330:29. doi:10.1016/j.jcis.2008.10.026

    Article  CAS  Google Scholar 

  10. Matlock MM, Howerton BS, Atwood DA (2002) Water Res 36:4757. doi:10.1016/S0043-1354(02)00149-5

    Article  CAS  Google Scholar 

  11. Isshiki M (1996) Vaccum 47:885. doi:10.1016/0042-207X(96)00087-5

    Article  CAS  Google Scholar 

  12. Grimm J, Bessarabov D, Sanderson R (1998) Desalination 115:285. doi:10.1016/S0011-9164(98)00047-2

    Article  CAS  Google Scholar 

  13. Baccar R, Bouzid J, Feki M, Montiel F (2009) J Hazard Mater 162:1522. doi:10.1016/j.jhazmat.2008.06.041

    Article  CAS  Google Scholar 

  14. Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Longmuir 25:3. doi:10.1021/la802754t

    Article  CAS  Google Scholar 

  15. Ozay O, Kici S, Baran Y, Kubilay S, Aktas N, Sahiner N (2010) Desalination 260:57. doi:10.1016/j.desal.2010.04.067

    Article  CAS  Google Scholar 

  16. Sahiner N, Ozay O (2011) Colloid Surf A: Physicochem Eng Asp 378:50. doi:10.1016/j.colsurfa.2011.01.053

    Article  CAS  Google Scholar 

  17. Ilgin P, Avci G, Silan C, Ekici S, Aktas N, Ramesh SA, John VT, Sahiner N (2010) Carbohydr Polym 82:997. doi:10.1016/j.carbpol.2010.06.033

    Article  CAS  Google Scholar 

  18. Ozay O, Aktas N, Inger E, Sahiner N (2011) Int J Hydrog Energy 36:1998. doi:10.1016/j.ijhydene.2010.11.045

    Article  CAS  Google Scholar 

  19. Chauhan GS, Chauhan S, Sen U, Garg D (2009) Desalination 243:95. doi:10.1016/j.desal.2008.04.017

    Article  CAS  Google Scholar 

  20. Drury JL, Mooney DY (2003) Biomaterials 24:4337. doi:10.1016/S01429612(03)00340-5

    Article  CAS  Google Scholar 

  21. Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) Biomaterials 25:1339. doi:10.1016/j.biomaterials.2003.08.014

    Article  CAS  Google Scholar 

  22. Kim JJ, Park K (1998) Bioseparation 7:177. doi:10.1023/A:1008050124949

    Article  CAS  Google Scholar 

  23. Gupta P, Vermani K, Garg S (2002) Drug Discov Today 7:569. doi:10.1016/S1359-6446(02)02255-9

    Article  CAS  Google Scholar 

  24. Polizzotti BD, Fairbanks BD, Anseth KS (2008) Biomacromolecules 9:1084. doi:10.1021/bm7012636

    Article  CAS  Google Scholar 

  25. Murthy PSK, Mohan YM, Varaprasad K, Sredhar B, Mohana Raju K (2008) J Colloid Interface Sci 318:217. doi:10.1016/j.jcis.2007.10.014

    Article  CAS  Google Scholar 

  26. Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Mohana Raju K (2009) Carbohydr Polym 75:463. doi:10.1016/j.carbpol.2008.08.009

    Article  CAS  Google Scholar 

  27. Zrínyi M, Barsi L, Büki A (1997) Polym Gels Netw 5:415. doi:10.1016/S0966-7822(97)00010-5

    Article  Google Scholar 

  28. Li B, Jia D, Zhou Y, Hu Q, Cai W (2006) J Magn Magn Mater 306:223. doi:10.1016/j.jmmm.2006.01.250

    Article  CAS  Google Scholar 

  29. Bhattarai SR, Bahadur KCR, Aryal S, Khil MS, Kim HY (2007) Carbohydr Polym 69:467. doi:10.1016/j.carbpol.2007.01.006

    Article  CAS  Google Scholar 

  30. Lao LL, Ramanujan RV (2004) J Mater Sci Mater Med 15:1061. doi:10.1023/B:JMSM.0000046386.78633.e5

    Article  CAS  Google Scholar 

  31. Lu X, Mi YM (2005) Macromolecules 38:839. doi:10.1021/ma0486896

    Article  CAS  Google Scholar 

  32. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Mol Pharam 2:194. doi:10.1021/mp0500014

    Article  CAS  Google Scholar 

  33. Chia CH, Zakaria S, Ahamad S, Abdullah M, Jani SM (2006) Am J App Sci 3:1750, ISSN 1546–9239

    Article  CAS  Google Scholar 

  34. Rozada F, Otero M, Moran A, Garcia AI (2008) Bioresour Technol 99:6332. doi:10.1016/j.biortech.2007.12.015

    Article  CAS  Google Scholar 

  35. Ozay O, Kici SE, Baran Y, Aktas N, Sahiner N (2009) Water Res 43:4403. doi:10.1016/j.watres.2009.06.058

    Article  CAS  Google Scholar 

  36. Sahiner N, Ozay O (2011) React Funct Polym 71:607. doi:10.1016/j.reactfunctpolym.2011.03.003

    Article  CAS  Google Scholar 

Download references

Acknowledgement

KMR and NNR thank the University Grants Commission (UGC), Government of India, New Delhi for the partial financial support (UGC Sanction Letter No.F.37-339/2009 (SR) dated 05-01-2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohana Raju Konduru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagireddy, N.R., Yallapu, M.M., Kokkarachedu, V. et al. Preparation and characterization of magnetic nanoparticles embedded in hydrogels for protein purification and metal extraction. J Polym Res 18, 2285–2294 (2011). https://doi.org/10.1007/s10965-011-9642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9642-2

Keywords

Navigation