Skip to main content
Log in

Oriented re-crystallization of polypropylene through partial melting and its dramatic influence on mechanical properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A promising method for toughening isotactic polypropylene (iPP) without loss of stiffness is to enhance molecular orientation during processing. However, conventional injection molding cannot impart remarkable molecular orientation to the molded bars as a result of retarded lamellar growth upon rapid solidification and thus has little contribution to the toughness enhancement. Herein, we demonstrated that molecular orientation in the conventional injection molded iPP bars has been notably enhanced through oriented re-crystallization after partial melting at 175 °C. As a result, about 3.5 times increase in the toughness, in parallel with apparent strength enhancement, has been gained in these re-crystallized bars. Our findings offer a simple and economic approach to produce tough iPP and maybe other semi-crystalline polymers in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Argon AS, Cohen RE (2003) Polymer 44:6013–6032

    Article  CAS  Google Scholar 

  2. Liang JZ (2002) J Appl Polym Sci 83:1547–1555

    Article  CAS  Google Scholar 

  3. Rajesh Babu R, Singha NK, Naskar K (2010) J Polym Res 17:657–671

    Article  Google Scholar 

  4. Lin Y, Chen H, Chan CM, Wu J (2008) Macromolecules 41:9204–9213

    Article  CAS  Google Scholar 

  5. Thio YS, Argon AS, Cohen RE, Weinberg M (2002) Polymer 43:3661–3674

    Article  CAS  Google Scholar 

  6. Karger-Kocsis J, Varga J (1996) J Appl Polym Sci 62:291–300

    Article  CAS  Google Scholar 

  7. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Macromolecules 40:2745–2750

    Article  CAS  Google Scholar 

  8. Li JX, Cheung WL (1998) Polymer 39:6935–6940

    Article  CAS  Google Scholar 

  9. Bai H, Wang Y, Zhang Z, Han L, Li Y, Liu L, Zhou Z, Men Y (2009) Macromolecules 42:6647–6655

    Article  CAS  Google Scholar 

  10. Kalay G, Bevis MJ (1997) J Polym Sci Polym Phys 35:241–263

    Article  CAS  Google Scholar 

  11. Kantz MR, Newman HD, Stigale FH Jr (1972) J Appl Polym Sci 16:1249–1260

    Article  CAS  Google Scholar 

  12. Martin J, Margueron S, Fontana M, Cochez M, Bourson P (2010) Polym Eng Sci 50:138–143

    Article  CAS  Google Scholar 

  13. Mendoza R, Régnier G, Seiler W, Lebrun JL (2003) Polymer 44:3363–3373

    Article  CAS  Google Scholar 

  14. Zhu PW, Edward G (2004) Polymer 45:2603–2613

    Article  CAS  Google Scholar 

  15. Seki M, Thurman DW, Oberhauser JP, Kornfield JA (2002) Macromolecules 35:2583–2594

    Article  CAS  Google Scholar 

  16. Kumaraswamy G, Verma RK, Kornfield JA, Yeh F, Hsiao BS (2004) Macromolecules 37:9005–9017

    Article  CAS  Google Scholar 

  17. Somani RH, Yang L, Hsiao BS (2002) Physica A 304:145–157

    Article  CAS  Google Scholar 

  18. Elmoumni A, Winter HH, Waddon AJ (2003) Macromolecules 36:6453–6461

    Article  CAS  Google Scholar 

  19. Isayev AI (1983) Polym Eng Sci 23:271–284

    Article  CAS  Google Scholar 

  20. Stribeck N, Nöchel U, Almendárez Camarillo A, Roth SV, Dommach M, Bösecke P (2007) Macromolecules 40:4535–4545

    Article  CAS  Google Scholar 

  21. Stribeck N, Nöchel U, Funari SS (2009) Macromolecules 42:2093–2101

    Article  CAS  Google Scholar 

  22. Fujiyama M, Masada I, Mitani K (2000) J Appl Polym Sci 78:1751–1762

    Article  CAS  Google Scholar 

  23. Na B, Wang Y, Zhang Q, Fu Q (2004) Polymer 45:6245–6260

    Article  CAS  Google Scholar 

  24. Olley RH, Bassett DC (1982) Polymer 23:1707–1710

    Article  CAS  Google Scholar 

  25. Song Y, Nitta K, Nemoto N (2003) Macromolecules 36:1955–1961

    Article  CAS  Google Scholar 

  26. Huy TA, Adhikari R, Lüpke T, Henning S, Michler GH (2004) J Polym Sci Polym Phys 42:4478–4488

    Article  CAS  Google Scholar 

  27. Pople JA, Mitchel GR, Sutton SJ, Vaughan AS, Chai CK (1999) Polymer 40:2769–2777

    Article  CAS  Google Scholar 

  28. Strobl G (2007) The Physics of Polymers. Springer.

  29. Supaphol P, Lin JS (2001) Polymer 42:9617–9626

    Article  CAS  Google Scholar 

  30. Xu J, Ma Y, Hu W, Rehahn M, Reiter G (2009) Nat Mater 8:348–353

    Article  CAS  Google Scholar 

  31. Na B, Lv RH (2006) J Polym Sci Polym Phys 44:2880–2887

    Article  CAS  Google Scholar 

  32. Schrauwen BAG, Breemen LCAv, Spoelstra AB, Govaert LE, Peters GWM, Meijer HEH (2004) Macromolecules 37:8618–8633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 20704006), the Project of Jiangxi Provincial Department of Education (No. GJJ11138, GJJ08295) and the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Na.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, B., Li, Z., Lv, R. et al. Oriented re-crystallization of polypropylene through partial melting and its dramatic influence on mechanical properties. J Polym Res 18, 2103–2108 (2011). https://doi.org/10.1007/s10965-011-9620-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9620-8

Keywords

Navigation