Skip to main content
Log in

Biodegradable bio-based polyesters with controllable photo-crosslinkability, thermal and hydrolytic stability

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biodegradable poly{3,4-dihydroxycinnamic acid (DHCA, coffeic acid)-co-lithocholic acid (LCA)} polyester was synthesized by polycondensation of DHCA and LCA. The molecular structure of poly(DHCA-co-LCA) copolymers was characterized by FT-IR and 1H-NMR measurement. The photo-crosslinkability of poly(DHCA-co-LCA) depended on their compositions and could be tuned by varying the monomer ratio. The presence of LCA in the copolymers enhanced the solubility and thermal stability. In addition, poly(DHCA-co-LCA) and PDHCA exhibited higher fluorescence emission intensity than DHCA monomer. Accelerated hydrolysis experiments revealed that the degradation rate of poly(DHCA-co-LCA) was slower than that of PDHCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shalaby SW, Burg KJL (eds) (2003) Absorbable and biodegradable polymers (advances in polymeric materials). CRC, Boca Raton

    Google Scholar 

  2. Piskin E (1995) Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed 6(9):775–795

    Article  CAS  Google Scholar 

  3. Li Bo-Hsin, Yang M-C (2006) Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4, 4-methylene diphenyl diisocyanate. Polym Adv Technol 17:439–443

    Article  CAS  Google Scholar 

  4. Haderlein G, Petersen H, Schmidt C, Wendorff JH, Schaper A, Jones DB, Visjager J, Smith P, Greiner A (1999) Synthesis and properties of liquid crystalline aromatic copolyesters with lactide moieties. Macromol Chem Phys 200:2080–2087

    Article  CAS  Google Scholar 

  5. Wiltshire JT, Qiao GG (2006) Selectively degradable core cross-linked star polymers. Marcomolecules 39:9018–9027

    Article  CAS  Google Scholar 

  6. Thronton PD, Mart RJ, Ulijn RV (2007) Enzyme-responsive polymer hydrogel particles for controlled release. Adv Mater 19(9):1252–1256

    Article  CAS  Google Scholar 

  7. Jiang J, Qi B, Lepage M, Zhao Y (2007) Polymer micelles stabilization on demand through reversible photo-cross-linking. Macromolecules 40(4):790–792

    Article  CAS  Google Scholar 

  8. Shi DJ, Matsusaki M, Akashi M (2009) Unique size-change behavior of photo-crosslinked cinnamic acid derivative nanoparticles during hydrolytic degradation. Macromol Biosci 9:248–255

    Article  CAS  Google Scholar 

  9. Kaneko T, Tran HT, Matsusaki M, Shi DJ, Akashi M (2006) Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nat Mater 2006(5):996

    Google Scholar 

  10. Matsusaki M, Tran HT, Kaneko T, Akashi M (2005) Enhanced effects of lithocholic acid incorporation into liquid-crystalline biopolymer poly(coumaric acid) on structural ordering and cell adhesion. Biomaterials 26:6263–6270

    Article  CAS  Google Scholar 

  11. Kaneko T, Tran HT, Matsusaki M, Akashi M (2006) Biodegradable LC oligomers with cranked branching points form highly oriented fibrous scaffold for cytoskeletal orientation. Chem Mater 18:6220–6226

    Article  CAS  Google Scholar 

  12. Hoff WD, Dux P, Hard K, Devreese B, Nugteren Roodzant IM et al (1994) Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry. Biochemistry 33(47):13959–13962

    Article  CAS  Google Scholar 

  13. Tran HT, Matsusaki M, Shi DJ, Kaneko T, Akashi M (2008) Synthesis and properties of coumaric acid derivative homo-polymers. J Biomater Sci Polym Ed 19:75–85

    Article  Google Scholar 

  14. Tran HT, Matsusaki M, Akashi M (2008) Thermally stable and photoreactive polylactides by the terminal conjugation of bio-based caffeic acid. Chem Commun 3918–3920

  15. Tran HT, Matsusaki M, Akashi M (2009) Development of photoreactive degradable branched polyesters with high thermal and mechanical properties. Biomacromolecules 10:766–772

    Article  Google Scholar 

  16. Sun J, Mustafi R, Cerda S, Chumsangsri A, Xia Y, Li YM, Bissonnette M (2008) Lithocholic acid down-regulation of NF-kB activity through vitamin D receptor in colonic cancer cells. J Steroid Biochem Mol Biol 111(1–2):37–40

    Article  CAS  Google Scholar 

  17. Ishizawa M, Matsunawa M, Adachi R, Uno S et al (2008) Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J Lipid Res 49(4):763–772

    Article  CAS  Google Scholar 

  18. Chang K, Lee L, Chen J, Li W (2006) Lithocholic acid analogues, new and potent α -2, 3-sialyltransferase inhibitors. Chem Commun 18(6):629–631

    Article  Google Scholar 

  19. Matsusaki M, Tran HT, Kaneko T, Akashi M (2005) Enhanced effects of lithocholic acid incorporation into liquid crystalline biopolymer poly(coumaric acid) on structural ordering and cell adhesion. Biomaterials 26:6263–6270

    Article  CAS  Google Scholar 

  20. Matsusaki M, Kishida A, Stainton N, Ansel C, Akashi M (2001) J Appl Polym Sci 82:2357–2364

    Article  CAS  Google Scholar 

  21. Flory PJ (1952) Molecular size distribution in three-dimensional polymers. VI. Branched polymer containing A-R-Bf-1-type units. J Am Chem Soc 74:2718–2723

    Article  CAS  Google Scholar 

  22. Kricheldorf HR, Stoeber O (1994) New polymer syntheses, 76. Hyperbranched polyesters by polycondensation of silylated 5-acetoxyisophthalic acid. Macromol Rapid Commun 15(1):87–93

    Article  CAS  Google Scholar 

  23. Zhang L, Eisenberg A (1995) Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268(5218):1728–1731

    Article  CAS  Google Scholar 

  24. Tae GP (1995) Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16:1123–1130

    Article  Google Scholar 

  25. Edith M, Jules J, Kathleen P, Donald C (1993) Morphological characterization of bioerodible polymers. 3. characterization of the erosion and intact zones in polyanhydrides using scanning electron microscopy. Macromolecules 26:6756–6765

    Article  Google Scholar 

  26. Teranishi K, Nishiguchi T (2004) Cyclodextrin-bound 6-(4-methoxyphenyl)imidazo[1, 2-α]pyrazin-3(7H)-ones with fluorescein as green chemiluminescent probes for superoxide anions. Anal Biochem 325(2):185–195

    Article  CAS  Google Scholar 

  27. Gao JX, Wang P, Giese RW (2002) Xanthamide fluorescent dyes. Anal Chem 74(24):6397–7401

    Article  CAS  Google Scholar 

  28. Hirano T, Kikuchi K, Urano Y, Nagano T (2002) Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J Am Chem Soc 124(23):6555–6562

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation (20876070) and the Fundamental Research Funds for the Central Universities (JUSRP10906, JUSRP31001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, W., Li, H., Chen, M. et al. Biodegradable bio-based polyesters with controllable photo-crosslinkability, thermal and hydrolytic stability. J Polym Res 18, 1239–1247 (2011). https://doi.org/10.1007/s10965-010-9526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9526-x

Keywords

Navigation