Skip to main content
Log in

Controlled preparation of Fe3O4/P (St-MA) magnetic composite microspheres by DPE method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, controlled radical polymerization based on 1, 1-diphenylethylene (DPE method) was used to prepare magnetic composite microspheres. By this method, Fe3O4/P (St-MA) magnetic composite microspheres were prepared via copolymerization of styrene (St) and maleic anhydride (MA) using DPE as radical control agent in the presence of Fe3O4 nanoparticles. The structure and properties of the magnetic composite microspheres obtained were characterized by IR, 1H-NMR, SEC-MALLS, TEM, TGA, VSM, DLS and other instruments. It was found that the DPE method allows the controlled preparation of magnetic composite microspheres, and Fe3O4/ P(St-MA) microspheres possess perfect sphere-shaped morphology, homogeneous particle size, carboxylic surface, superparamagnetism with a saturation magnetization of 14.704 emu/g, and magnetic content with a value of 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yossi W, Fernando P, Eugenii K, Itamar W (2003) J Am Chem Soc 125:3452–3454

    Article  Google Scholar 

  2. Chau JT, Hong GC, Kwee HK, Yen WT (2008) Anal Chem 80:683–692

    Article  Google Scholar 

  3. Motoki K, Haruko T, Tsuyoshi T, Tadashi M (2004) Anal Chem 76:6207–6213

    Article  Google Scholar 

  4. Ryosuke M, Kazuya Y, Hideyuki O, Atsushi T (2004) Macromolecules 37:2203–2209

    Article  Google Scholar 

  5. Wolfgang HB, Dietrich G, Harald W, Harald W, Günther A, Ernst P (2007) Macromolecules 40:3097–3107

    Article  Google Scholar 

  6. Ryosuke M, Kazuya Y, Hideyuki O, Atsushi T (2003) Chem Mater 15:3–5

    Article  Google Scholar 

  7. Fan QL, Neoh KG, Kang ET, Borys S, Wang SC (2007) Biomaterials 28:5426–5436

    Article  CAS  Google Scholar 

  8. Eizo M, Shinpei Y, Tsedev N, Yoshinobu T, Takeshi F, Mikio T (2004) Polymer 45:2231–2235

    Article  Google Scholar 

  9. Yin M, Wolf DH, Brigitte V (2005) Polymer 46:3215–3222

    Article  CAS  Google Scholar 

  10. Hu B, Fuchs A, Huseyin S, Gordaninejad F, Evrensel C (2006) Polymer 47:7653–7663

    Article  CAS  Google Scholar 

  11. Qiu J, Bernadette C, Krzysztof M (2001) Prog Polym Sci 26:2083–2134

    Article  CAS  Google Scholar 

  12. Michael FC (2008) Prog Polym Sci 33:365–398

    Article  Google Scholar 

  13. Enrique LM (2002) Prog Polym Sci 27:1879–1924

    Article  Google Scholar 

  14. Yuichi Y, Krzysztof M (2008) J Polym Sci Pol Chem 46:2015–2024

    Article  Google Scholar 

  15. Philipp CW, Benedikt R, Oskar N (2001) Macromol Rapid Comm 22:700–703

    Article  Google Scholar 

  16. Sophie V, Markus A, Klaus T, Wolfgang B (2003) Polymer 44:1339–1351

    Article  Google Scholar 

  17. Sophie V, Klaus T, Markus A, Igor L, Wolfgang B (2005) Polymer 46:7843–7854

    Article  Google Scholar 

  18. Wu ZT, Zhang ZC (2005) Radiat Phys Chem 74:331–337

    Article  CAS  Google Scholar 

  19. Tomaz K, Christine S, Yusuf Y, Turgut N, Oskar N (2005) Eur Polym J 41:1265–1271

    Article  Google Scholar 

  20. Benedikt R, Oskar N, Philipp W, Wolfgang B (2002) Macromol Symp 177:25–41

    Article  Google Scholar 

  21. Gang X, Qiuyu Z, Zhengping L, Min W, Tiehu L (2003) J Appl Polym Sci 87:1733–1738

    Article  Google Scholar 

  22. Chiafen L, Taihorng Y, Yaoyuei H, Wenyen C (2000) Polymer 4:8565–8571

    Google Scholar 

  23. Atul AB, Rasesh YP, Maria B, Samuel J, Baetrice H, Toshiaki E, Prasad BLV, Yogesh SS, Satish O, Murali S (2008) Langmuir 24:5787–5794

    Article  Google Scholar 

  24. Shiyong Y, Hongjie Z, Jiangbo Y, Cheng W, Lining S, Weidong S (2007) Langmuir 23:7836–7840

    Article  Google Scholar 

  25. Jriuan L, Kurikka VPMS, Abraham U, Katja L, Yongjae L, Thomas V, Weili L, Ong NP (2005) J Phys Chem B 109:15–18

    Article  Google Scholar 

  26. Wei C, Jiaqi W (2007) J Colloid Interface Sci 305:366–370

    Article  Google Scholar 

  27. Elena T, Elisenda R, Anna R, Judit O, Alain R, Robert NM (2007) Langmuir 23:4583–4588

    Article  Google Scholar 

  28. Pedro T, Carlos JS (2002) Chem Mater 14:4396–4402

    Article  Google Scholar 

  29. Lenaic L, Khalid O, Yannick G, Joulia L, Christian G, Jean-Louis M, Veronique B, Claudio S, Andrea C, Claudia I, Kalaivani T, Arosio P, Lascialfari A (2009) Org Lett 11:2992–2995

    Article  Google Scholar 

  30. Xiaohong S, Chunming Z, Fuxiang Z, Landong L, Yali Y, Guangjun W, Naijia G (2008) J Phys Chem C 112:17148–17155

    Article  Google Scholar 

  31. Mingtai W, Xiaoguang Z, Shixing W, Lide Z (1999) Polymer 40:7387–7396

    Article  Google Scholar 

  32. Sauvage E, Amos DA, Antalek B, Schroeder KM, Tan JS, Plucktaveesak N, Colby RH (2004) J Polym Sci, B: Polym Phys 42:3571–3583

    Article  CAS  Google Scholar 

  33. Yilser GD, Zakir MOR, Erhan P (2006) Macromol. Chem Phys 207:111–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feige Guo or Qiuyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F., Zhang, Q., Zhang, H. et al. Controlled preparation of Fe3O4/P (St-MA) magnetic composite microspheres by DPE method. J Polym Res 18, 745–751 (2011). https://doi.org/10.1007/s10965-010-9471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9471-8

Keywords

Navigation