Skip to main content
Log in

Microstructure and properties of novel ReO2 /polyimide nanocomposite films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of Rhenium (VII, Re7+) compound-doped polyimide (PI) nanohybrid films had been successfully fabricated from methyltrioxorhenium (MTO) and polyamic acid (PAA) via the solution direct-dispersing method, followed by a stepwise thermal imidization process. X-ray photoelectron spectroscopy (XPS) confirmed that MTO had decomposed into Re (IV) oxidation state (ReO2). Field emission scanning electron microscopy (FE-SEM) showed that for the differrent hybrid films, the ReO2 nanoparticles which formed by MTO decomposing well dispersed in polyimide matrix with a size of 40–60 nm. Thermal analysis indicated that the introduction of MTO decreased the thermal stability and the glass transition temperature (Tg) because of the unstable MTO. DMTA and static tensile measurements showed that the storage modulus and the elongation at break of nanocomposite films had a maximum value when the 1% of MTO was doped in PI, while the tensile strength decreased with increasing MTO content on the whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clarson SJ, Mark JE (1987) Polym Commun 28:249

    CAS  Google Scholar 

  2. Navak BM, Auerbach D, Verruer C (1994) Chem Mater 6:282

    Article  Google Scholar 

  3. Huang HH, Orier B, Wilkes GL (1987) Macromolecules 20:1322

    Article  CAS  Google Scholar 

  4. Stefanithis ID, Maurltz KA (1990) Macromolecules 23:2397

    Article  CAS  Google Scholar 

  5. Wang S, Ahmad Z, Mark JE (1994) Chem Mater 6:943

    Article  CAS  Google Scholar 

  6. Jenekhe SA, Osaheni JA (1994) Chem Mater 6:1906

    Article  CAS  Google Scholar 

  7. Lü C, Cui Z, Guan C, Guan J, Yang B, Shen J (2003) Macromol Mater Eng 288:717

    Article  Google Scholar 

  8. Ahmad Z, Mark JE (2001) Chem Mater 13:3320

    Article  CAS  Google Scholar 

  9. Sroog CE (1991) Prog Polym Sci 16:561

    Article  CAS  Google Scholar 

  10. Ghosh MK, Mittal KL (1996) Polyimides: fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  11. Feger C (1996) Polyimide: trends in materials and applications. Society of Plastic Engineers, New York

    Google Scholar 

  12. Ding MX, He TB (1998) New materials of polyimide. Chinese Science Press, Beijing

    Google Scholar 

  13. Hasegawa M, Horie K (2001) Prog Polym Sci 26:259

    Article  CAS  Google Scholar 

  14. AhmadZandMark JE (2001) Chem Mater 13:3320

    Article  Google Scholar 

  15. Zhong J, Zhang M, Jiang Q, Zeng S, Dong T, Cai B, Lei Q (2006) Mater Lett 60:585

    Article  CAS  Google Scholar 

  16. Chiang PC, Whang WT (2003) Polymer 44:2249

    Article  CAS  Google Scholar 

  17. Tong YJ, Li YS, Xie FC, Ding MX (2000) Polym Int 49:1543

    Article  CAS  Google Scholar 

  18. Hsu SC, Whang WT, Hung CH, Chiang PC, Hsiao YN (2005) Macromol Chem Phys 206:291

    Article  CAS  Google Scholar 

  19. Tong YJ, Li YS, Liu JP (2002) J Appl Polym Sci 83:1810

    Article  CAS  Google Scholar 

  20. Wahab MA, Kim I, Ha CS (2003) Polymer 44:4705

    Article  CAS  Google Scholar 

  21. Tamaki R, Choi J, Laine RM (2003) Chem Mater 15:793

    Article  CAS  Google Scholar 

  22. Tsai MH, Whang WT (2001) Polymer 42:4197

    Article  CAS  Google Scholar 

  23. Espuchea E, Davida L, Rochasb C, Afeldc JL, Comptonc JM, Thompsonc DW, Thompsonc DS, Kranbuehlc DE (2005) Polymer 46:6657

    Article  Google Scholar 

  24. Southward RE, Thompson DS, Thornton TA, Thompson DW, StAK C (1998) Chem Mater 10:486

    Article  CAS  Google Scholar 

  25. Thompson DS, Thompson DW, Southward RE (2002) Chem Mater 14:30

    Article  CAS  Google Scholar 

  26. Bian LJ, Qian XF, Yin J, Lu QH, Liu L, Zhu ZK (2002) Polymer Testing 21:841

    Article  CAS  Google Scholar 

  27. Bian LJ, Qian XF, Yin J, Zhu ZK, Lu QH (2002) J Appl Polym Sci 86:2707

    Article  CAS  Google Scholar 

  28. Herrmann WA, Kratzer RM, Fischer RW (1997) Angew Chem Int Ed Engl 36:2652

    Article  CAS  Google Scholar 

  29. Lü C, Wang Z, Liu F, Yan J, Gao L (2006) J Appl Polym Sci 100:124

    Article  Google Scholar 

  30. Escalona N, Yates M, Ávila P, López Agudo A, García Fierro JL, Ojeda J, Gil-Llambías F (2003) J Appl Catal A: Gen 240:151

    Article  CAS  Google Scholar 

  31. Schennach R, Naugle DG, Cocke D, Dembinski R, Gladysz JA (2000) Vacuum 56:115

    Article  CAS  Google Scholar 

  32. Ren Y, Wu Y, Tian A (2001) Chinese J Org Chem 21:413

    CAS  Google Scholar 

  33. Qi S, Wang W, Wu D, Wu Z, Jin R (2006) Eur Polym J 42:2023

    Article  CAS  Google Scholar 

  34. Boggess RK, Taylor LT (1987) J Polym Sci Polym Chem Ed 25:685

    Article  CAS  Google Scholar 

  35. Mominul Alam SM, Agag T, Kawauchi T, Takeichi T (2007) React Funct Polym 67:1218

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Science Foundation for Young Teacher (No.20060303) and Analysis and Testing Foundation of Northeast Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Lü, X. Microstructure and properties of novel ReO2 /polyimide nanocomposite films. J Polym Res 17, 273–277 (2010). https://doi.org/10.1007/s10965-009-9314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9314-7

Keywords

Navigation