Skip to main content
Log in

Non-isothermal crystallization kinetic and compatibility of PTT/PP blends by using maleic anhydride grafted polypropylene as compatibilizer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The crystallization behaviors, non-isothermal crystallization kinetics, and the morphology of poly(trimethylene terephthalate)/Polypropylene (PTT/PP) blends using a maleic anhydride grafted polypropylene (PP-g-MAH) as a compatibilizer were investigated by differential scanning calorimeter (DSC) and scanning electron microscope (SEM), respectively. The results suggested that the blends exhibited different crystallization and melting behaviors due to different content of PP-g-MAH. All of the DSC curves of the blends exhibited two exothermic peaks and endothermic peaks. The commonly used Avrami equation modified by Jeziorny, Ozawa theory and the method developed by Mo were used, respectively, to fit the primary stage of non-isothermal crystallization process. The results suggested that the crystallization rate of PTT component was increased, whereas, that of PP component was retarded with the introduction of PP-g-MAH. The effective activation energy was calculated by differential iso-conversional method developed by Vyazovkin. The SEM result suggested that the introduction of PP-g-MAH greatly improved the compatibility between PTT and PP, and decreased the size of dispersed particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Reference

  1. Whinfield JR, Dickson JT (1946) Brit Pat 578:079

    Google Scholar 

  2. Wu J, Schultz JM, Samon JM et al (2001) Polymer (Guildf) 42:7141. doi:10.1016/S0032-3861(01)00042-8

    Article  CAS  Google Scholar 

  3. Grande JA (1997) Mod Plast 12:97

    Google Scholar 

  4. Li JX, Cheung WL, Jia D (1999) Polymer (Guildf) 40:1219. doi:10.1016/S0032-3861(98)00345-0

    Article  CAS  Google Scholar 

  5. Coccorullo I, Pantani R, Titomanlio G (2003) Polymer (Guildf) 44:307. doi:10.1016/S0032-3861(02)00762-0

    Article  CAS  Google Scholar 

  6. Masubuchi Y, Watanabe K, Nagatake W et al (2001) Polymer (Guildf) 42:5023. doi:10.1016/S0032-3861(00)00886-7

    Article  CAS  Google Scholar 

  7. Assoulinea E, Pohl S, Fulchiron R et al (2000) Polymer (Guildf) 41:7843. doi:10.1016/S0032-3861(00)00113-0

    Article  Google Scholar 

  8. Supaphol P, Lin JS (2001) Polymer (Guildf) 42:9617. doi:10.1016/S0032-3861(01)00507-9

    Article  CAS  Google Scholar 

  9. Supaphol P, Spruiellb JE (2001) Polymer (Guildf) 42:699. doi:10.1016/S0032-3861(00)00399-2

    Article  CAS  Google Scholar 

  10. Zhang Y, Jiang X, Guan Y et al (2005) Mater Lett 59:3626. doi:10.1016/j.matlet.2005.07.010

    Article  CAS  Google Scholar 

  11. Supaphol P (2001) Thermochim Acta 370:37. doi:10.1016/S0040-6031(00)00767-X

    Article  CAS  Google Scholar 

  12. Sekia M, Yamauchia S, Matsushitab Y (1999) J Phys Chem Solids 60:1333. doi:10.1016/S0022-3697(99)00120-1

    Article  Google Scholar 

  13. Silvestre C, Cimmino S, Alma ED et al (1999) Polymer (Guildf) 40:5119. doi:10.1016/S0032-3861(98)00696-X

    Article  CAS  Google Scholar 

  14. Shieh YT, Lee MS, Chen SA (2001) Polymer (Guildf) 42:4439. doi:10.1016/S0032-3861(00)00567-X

    Article  CAS  Google Scholar 

  15. Rabello MS, White JR (1997) Polymer (Guildf) 38:6389. doi:10.1016/S0032-3861(97)00214-0

    Article  CAS  Google Scholar 

  16. Albano C, Papa J, Ichazo M et al (2003) Compos Struct 62:291. doi:10.1016/j.compstruct.2003.09.028

    Article  Google Scholar 

  17. Campoy I, Arribas JM, Zaporta MAM et al (1995) Eur Polym J 31:475. doi:10.1016/0014-3057(94)00185-5

    Article  CAS  Google Scholar 

  18. Chen JH, Tsai FC, Nien YH et al (2005) Polymer (Guildf) 46:5680. doi:10.1016/j.polymer.2005.03.107

    Article  CAS  Google Scholar 

  19. Xiao Z, Li L, Zhou D et al (2003) Thermochim Acta 404:283. doi:10.1016/S0040-6031(03)00186-2

    Article  CAS  Google Scholar 

  20. Hieber CA (1995) Polymer (Guildf) 36:1455. doi:10.1016/0032-3861(95)95925-Q

    Article  CAS  Google Scholar 

  21. Dangseeyun N, Supaphol P, Nithitanakul M (2004) Polym Test 23:187. doi:10.1016/S0142-9418(03)00079-5

    Article  CAS  Google Scholar 

  22. Rwei SP (1999) Polym Eng Sci 39:2475

    Article  CAS  Google Scholar 

  23. Ravikumar HB, Ranganathaiah C, kunavaswany GN et al (2005) Polymer 46:2372. doi:10.1016/j.polymer.2004.12.058

    Article  CAS  Google Scholar 

  24. Zhang QX, Yu ZZ, Xie XL et al (2004) Polymer (Guildf) 45:5985. doi:10.1016/j.polymer.2004.06.044

    Article  CAS  Google Scholar 

  25. Chan CM, Wu JS, Li JX et al (2002) Polymer (Guildf) 43:2981. doi:10.1016/S0032-3861(02)00120-9

    Article  CAS  Google Scholar 

  26. Xu WB, Liang GD, Zhai HB et al (2003) Eur Polym J 39:1467. doi:10.1016/S0014-3057(03)00015-6

    Article  CAS  Google Scholar 

  27. Xue ML, Yu YL, Chuah HH (2007) J Macromol Sci Phys 46:603. doi:10.1080/00222340701258008

    Article  CAS  Google Scholar 

  28. Avarami M (1940) J Chem Phys 8:212. doi:10.1063/1.1750631

    Article  Google Scholar 

  29. Jeziorny A (1978) Polymer (Guildf) 19:1142. doi:10.1016/0032-3861(78)90060-5

    Article  CAS  Google Scholar 

  30. Ozawa T (1971) Polymer (Guildf) 12:150. doi:10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  31. Liu TX, Mo ZS, Zhang HF (1998) J Polym Eng 18:283

    Article  CAS  Google Scholar 

  32. Friedman H (1964–1965) J Polym Sci 6(Part C):183

  33. Vyazovkin S (1997) J Comput Chem 18:393. doi:10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P

    Article  CAS  Google Scholar 

  34. Vyazovkin S (2001) J Comput Chem 22:178. doi:10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#

    Article  CAS  Google Scholar 

  35. Choe CR, Lee KH (1989) Polym. Eng Sci 29:801

    Article  CAS  Google Scholar 

  36. Liu MY, Zhao QX, Wang YD et al (2003) Polymer (Guildf) 44:2537. doi:10.1016/S0032-3861(03)00101-0

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work is supported by the financial support from the Natural Science Foundation of Hebei Province (B2007000108), PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Run, M. Non-isothermal crystallization kinetic and compatibility of PTT/PP blends by using maleic anhydride grafted polypropylene as compatibilizer. J Polym Res 16, 725–737 (2009). https://doi.org/10.1007/s10965-009-9279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9279-6

Keywords

Navigation