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Abstract

Exponential functionals of Lévy processes appear as stationary distributions
of generalized Ornstein-Uhlenbeck (GOU) processes. In this paper we obtain the
infinitesimal generator of the GOU process and show that it is a Feller process.
Further we use these results to investigate properties of the mapping ®, which
maps two independent Lévy processes to their corresponding exponential functional,
where one of the processes is assumed to be fixed. We show that in many cases this
mapping is injective and give the inverse mapping in terms of (Lévy) characteristics.
Also, continuity of ® is treated and some results on its range are obtained.
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1 Introduction

The exponential functional of a bivariate Lévy process (&,n)T = ((&,m:)T )i>0 is defined as
Voo = / e~ S dn,. (1.1)
(0,00)

Necessary and sufficient conditions for the convergence of integrals of the form f(07 q e~%=dn,
as t — oo for a bivariate Lévy process (&,7)T were given by Erickson and Maller [12, Thm.
2]. Distributional properties of exponential functionals have been studied in various arti-
cles throughout the years by e.g. Paulsen [34], Yor [41], Bertoin et al. [6], Kondo et al. [22],
Lindner and Sato [28], Behme [3] and Kuznetsov et al. [23] to name just a few.
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Denote by £(X) the law of a random variable X. In this paper, for a given one-dimensional
Lévy process &, we will consider mappings like

O, : D — set of probability distributions on R,

L(m) E(/Oooeés‘ dns)

defined on D¢ := {L(n) : n Lévy process, independent of £, such that fooo e~ dn,
converges a.s.} and we will examine injectivity and continuity of such mappings and
gather information about their ranges. In the case that & = at is deterministic, it is well
known that D¢ = IDjo(R) is the set of real-valued infinitely divisible distributions with
finite log*-moment and that ®; is an algebraic isomorphism between IDjoq(R) and L(R),
the set of real-valued selfdecomposable distributions [16, Prop. 3.6.10].

We start with a short example of a special case to illustrate the kind of results we obtain,
as well as the occuring problems.

Example 1.1. Suppose (&;)i>0 is a compound Poisson process with intensity rate A and
Jump heights measure 7. Let 1 be a Lévy process independent of & such that L(m;) € De.
Define T; to be the time of the ith jump of & with Ty := 0. Then

V. — / b dn =Y / ey =Y ( e—Am) O
(0,00) i=0 ¥ (Ti,Tit1] k=1

1=0 =

Since (e’AgTi,nTi+1 —N1)im012,... 1S an i.i.d. sequence, as e.g. in [5] we obtain from this
the distributional fized point equation

Ve £ XV +H

where (X, H) < (™% npy —nr,) fori=1,2,... and Vy < V! where V_ is independent
of (X, H). In terms of characteristic functions this yields ¢y, (u) = ¢xv (w)on(u) and
adding the fact that the characteristic function ¢, of the Lévy process (n:)i>0 and the
corresponding exponentially subordinated process (Hy)i>0 = (Nr@))ez0 with 7 ~ Exp(A)
fulfill the equation \

A = log(¢y(u))

or(u) =

(see e.g. [40, p.10]) we have

log(y (1)) v (1) = A (v (1) = dxvy () = A/

R

<E [e"V=] — E [ei“eny”}> 7(dy).
(1.2)

Now, in the setting of the example if we knew that the characteristic function of V,, is
non-zero on a dense subset of R this gave us a formula for the characteristic exponent of n
and thus injectivity of the mapping ®,. But in general the quotient of two characteristic
functions does not necessarily yield a unique solution as has already been remarked in
[29]. Examples for non-uniqueness of such quotients are also given in [25].
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To obtain formulas like (L2)) for general Lévy processes (£,7)T we will strongly make use
of the fact that GOU processes are Markov processes. So, in Section [3 we first compute the
infinitesimal generator of the GOU process and show that it is actually a Feller process. In
Section Ml these results will be used to obtain formulas of the form (L2) for general, inde-
pendent Lévy processes £ and 7). Hereby we obtain a general formula for log(¢,(u))ov.. (u)
in terms of the characteristic triplet of £ and £(V,,) as given in Theorem [ ]and Corollary
4.3 and on the other hand in Theorem we express 1og(¢_¢(1))diog|vio|(v) in terms of
the characteristic triplet of n and £(V).

Further, Section [ is devoted to the study of injectivity, which - in view of the results
of Section @ - now reduces to an examination of when either ¢y, (u) or ¢iog v, |(u) are
non-zero on a dense subset of R. We give various examples of when the mapping ®¢ or
its counterpart ®, (which maps £(£;) to £(Va) for 7 fixed) are injective and argue why
injectivity cannot be obtained if £ and n are allowed to exhibit a dependence structure.
Section [0 then uses the previous results to obtain information on the ranges of ®, and
Cfn. In particular, Theorem shows that centered Gaussian distributions can only be
obtained in the setting of (standard) OU processes, i.e. for { being deterministic and 7
being a Brownian motion.

Finally, in Section [7] we give conditions for continuity (in a weak sense) of the mappings
®, and (i)n and give an example of ®, being not continuous.

2 Some background on GOU processes and Nota-

tions

By the Lévy-Khintchine formula (e.g. [36, Thm. 8.1]) the characteristic exponent of an
Re-valued Lévy process X = (X;);>0 is given by

Ux(u) = logx(u) :=log E [¢"*]
= i) = gl Axah + [ (€0 <1 i, a) e ox(da)
Rd

where (vx, Ax,vx) is the characteristic triplet of X. In case that X is real valued we will
usually replace Ax by o%. To simplify notations, we set v({0}) = 0 for any Lévy measure
v. If the Lévy measure vy satisfies the condition f\x\ < l7|vx (dz) < co we may also use
the Lévy-Khintchine formula in the form

1

vxle) = i) = 5l Axu) + [ (@ = Dl

and call 4% the drift of X. We refer to [36] for any further information on Lévy processes.
We write AY; = Y; — Y;_ for any cadlag process Y.

Given a bivariate Lévy process ((&,1:)7 )0 and a random variable V; on the same prob-
ability space,

t
V, = e (/ e —dn, + VO) , t>0, (2.1)

0
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defines the generalized Ornstein-Uhlenbeck (GOU) process driven by (&€,n)T with starting
random variable V. In the case that & = at is deterministic, the process V; is usually called
Ornstein-Uhlenbeck-type process, while if (&, ;) = (at, B;) for B a Brownian motion, V;
is known as Ornstein-Uhlenbeck (OU) process.

The GOU process driven by (£,1)7 is the unique solution of the stochastic differential
equation
dVy =V,_dUy +dL;, t>0, (2.2)

for the bivariate Lévy process ((Uy, Ly)T)>0 given by

U —& D peses (€785 = 1+ AE) +ta)2 )
- < , t>0, 2.3
( Ly ) ( me+ Eo<s§t(eiA£S — 1)Ans —tog, (2:3)

where o7 and ¢, denote the (1,1) and (1, 2) elements of the Gaussian covariance matrix
A(¢.- Equation (23) defines a bijection between all bivariate Lévy processes (&,1) and
all bivariate Lévy process (U, L)T such that vy((—oo,—1]) = 0. The upper line of (23]
is equivalent to e~% = £(U);, where £(U); is the stochastic exponential of U, which is
defined as the unique cadlag solution S of S; = 1+ f(O,t] Ss—dUs (see e.g. [35, Thm. I1.37]).

Equation (Z2) has a solution for any bivariate Lévy process (U, L)T and any starting
random variable V; independent of (U, L), which in the case vy({—1}) = 0 is given by

Vi =E(U); (/M EU)dns + Vo) : (2.4)

where ny = Ly — Y g o) (1 + AU,) PAUAL, — toy,p, see [4, Thm. 2.1]. The processes
of the form (2.4]) hence constitute a slightly larger class of stochastic processes than the
GOU processes defined by (2] since they allow U also to have jumps smaller than —1.
Obviously, the GOU process defined in (2.I]) as well as the process defined in (2.4)) are
time homogeneous Markov processes [4, Lem. 3.3].

In [27] necessary and sufficient conditions for the existence of causal, strictly stationary
solutions of the generalized Ornstein-Uhlenbeck process (2.1]) are given. In particular it is
shown (|27, Thm. 2.1]) that if (V};);>¢ is strictly stationary and causal, then f 04 € S-dL,
with L as defined in (23] converges a.s. to a finite random variable as ¢ — oo and the
stationary law p is given by pu = £(Vy) for V f(o e %-dL,. Observe that L = n if
¢ and 7 are independent.

The space of continuous functions R? — R is denoted by C(R?). The subspaces of bounded
functions, functions vanishing at infinity and functions with compact support are writ-
ten as Cy(RY), Cp(R?) and C.(RY), resp. For n € N we write C"(R?) for the space of
functions which are n-times continuously differentiable. Functions in Cf(R%) are n-times
continuously differentiable and the first n derivatives are bounded. Cf(R?) and C7(R%)
are defined likewise. For any bounded function f we let ||f|| = || f||s denote its supre-

mum norm. We write “%” to denote equality in distribution of random variables, « 9y
to denote convergence in distribution of random variables, i.i.d. for “independent and
identically distributed”, and log*(z) = log(max{x, 1}) for z € R. Throughout, the char-
acteristic function of a random variable X is denoted by ¢x(u) = Fe™* u € R, and
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the Fourier transform of a finite measure p on (R, By) by fi(u) = [ €™ p(dx). Here, By
denotes the Borel-o-algebra in R.

3 Feller property and the infinitesimal generator of
the GOU process

Let (X¢)i>0 be a time homogeneous Markov process on R¢ with semigroup T}, i.e.

150) = [ fu)ule.dy) = E(FX0)

where p,(z,dy) = P(X; € dy|Xo, = x) are the transition probabilities of X and f €
Co(R%). Then X is a Feller process in RY if its semigroup fulfills the Feller properties

(F1)  T,Co(R?) C Co(RY)
(F2) T,f = fast—0 VfeCy(RY),
where the convergence under (F2) is meant to hold in the Banach space (Co(R%), || - ||oo)-

The infinitesimal generator AX of a Feller process X is defined by

AXf =t 2 =]

t—0 t

for all functions f in the domain of AX, i.e. all f in

- Lf-f

Xy _ d ¢ .

D(A?) = {f € Ch(R ),%1_%1 ; exists in || HOO}

A subspace D of D(AX) is said to be a core for the generator AX, if the closure of the
restriction of AX to D is equal to AX.

Every Lévy process X is a Feller process. If the Lévy process X is real-valued its generator
A% is given by (e.g. [36, Thm. 31.5])

A¥ @) = 3% @) + xS @) + [ (Fat ) = Fa) = of @) teosldy) ()

and it holds C3(R) C D(AX).

The generator of the OU process is well known in the literature, unlike the generator of
the GOU process, which is presented in the next theorem. For Lévy processes with finite
second moment this generator is also given in [2I, Thm. 4.6.1] and the formula for the
generator can also be found in [35, Exercise V.7] (containing a typo). The fact that GOU
processes are Feller processes and the determination of the cores seems to be new.

Note that the equation dV,* = x + f(oﬂ VI dUs + dLy can be written as

VP =+ / o(VE) d(U,, Ly)" (3.2)
(0,t]
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with g(u) = (u,1) € R"2. Solutions of ([B.2]) with bounded and locally Lipschitz g are well
known to constitute Feller process (e.g. [39, Cor. 3.3]), but the function u + (u, 1) is not
bounded so that this theory cannot be applied. Further, in [39, Rem. 3.4] an example is
given when ¢ is not bounded and the corresponding solution fails to be a Feller process.

Theorem 3.1. Let (Z;)>0 = ((Uy, Li)T )0 be a bivariate Lévy process with characteristic

2
triplet (7, Az, vz) where vz = (VU,WL)T; Ay = O,OU OOI,JQ’L> and VZ((thdZQ)T) such
U,L L

that vz((—1,dz)") = 0. Then the process (V)0 defined by

VEi=ux +/ VEdUs+ Ly == —|—/ g(VEYdZs, t>0, (3.3)
(0,4] (0,4]
for g(u) = (u,1) is a Feller process whose generator AV has a domain containing

S(R) = {f € CRR): I (12 (@)] + 7)) = o}.

In particular C*(R) C C*(R) C D(AV). For any f € S(R) the generator can be written
as

AVf() = F@alers+ 31" (@) (o2 Azg(@))

+ [ (et g@)2) = 1) = £ @) =A) vl
= @) )+ @) + 2200, + o) (34
+ /RQ(f(:c + 221 + 20) — f(x) — f'(x) (221 + 22) 1<) v (d2, d2s).
The spaces S(R), C2(R) and C=(R) are cores for AV.

Proof.

(i) Let us first establish the Feller property. It is well known that V;* is a time homogenous
Markov process (e.g. [4, Lem. 3.3]). By [2.4)), V;* is given by V;* = E(U ), (:c + f(O,t] EWU)! d'r]s).
Since £(U); # 0 as a consequence of vy ({—1}) = 0, we have lim|g|_, |V;*| = 0o and hence
limpy| 00 f(Vi¥) = 0 for any f € Co(R). By Lebesgue’s dominated convergence theorem,
this implies T; f(z) = E[f(V;")] — 0 as |x| — oo. The fact that for bounded and continu-
ous f the mapping z — E[f(V/*)] is continuous is obvious using dominated convergence.
Thus 7; maps Cy(R) into Cy(R) and (F1) is shown. (F2) follows from (F1) and [26, Thm.
3.15], observing that for each x € R, V¥ satisfies P(Vy" = z) = 1 and (V;*);>0 is adapted
to the smallest filtration satisfying the usual hypotheses induced by ((Uy, Lt)T);>0, which
is right continuous.

(i) Before we prove (3.4]), we give a bound for the integrand appearing in ([3.4) which will
be used throughout. Let f € S(R) and set

Ki(f) = zlel]g{lf’(y)l(1+|y|)+|f”(y)|(1+|y|)2}<OO and (3.5)



1 1 2
Ky, = —sup sup —( i)

2 yer  cericl<(i+ly/2 (1 + 1y +¢])?

We claim that

|f(x 4+ a2+ 20) = f(x) = f'(@) (@21 + 22) 1)< (3.6)
< Kl(f)K2|Z|21|z|§1/2 + K ()21 j2<pz1<1 + 2| fl| L2512 ¥V 2 = (21, 22)T eR? zeR.

Indeed, this is obvious for |z| > 1/2 since |zz; + 23] < V1I+22[z] < (1
|z| < 1/2, by Taylor’s theorem there is ¢ € R with 0 < |(] < |z21 + 22| <
(14 |x|)/2 such that

|)|z|. For

+ [
(1 +[z)]2] <

|f(@ 4221 + 22) — f(2) — f/(@) (221 + 20)]
= 27 f"(x+ O)l(z21 + 22)°

27| (x4 Q) (1 + |z +¢])?

< Ki(f) Kz,

(1 + |l‘|)2 | ‘2
(14 [z +¢])?

IN

which shows (B8] also for |z| < 1/2. In particular, the right hand side of ([34)) is in Cy(R)
for f € S(R) by Lebesgue’s dominated convergence theorem.

(iii) Let us show ([B4). Let f € S(R), then by Ito’s formula (e.g. [35, Thm. I1.32]) we have

FVE) = (V)

(0,t] 2 (0,¢] 0<s<t

and hence
T.f(z)— f(x) = E[f(V{) - f(V§)]
FOVEAVE+ Y (FVE) = FVE) = FI(VE)AVY)

(Ovt] 0<s<t

1
+-E [ frVE Ve, Vel
2 Loy

= L, +1I;, say. (3.7)

= K

Observe that dV¥ = g(Vi)dZ, and AVF = g(VI)AZ,. Since Z is a Lévy process,
by the Lévy-1t6 decomposition (e.g. [2, Thm. 2.4.16]) we can write Z; = vzt + M; +
Y 0cs<t AZ LAz, 151, where (My);> is a square integrable martingale with expectation 0.
Hence we obtain for the first term

L = E[ (Oﬂf’wf)g(v:wzds]w[ f’(V;““")g(V;”)dMs]

(0,¢]

+E Z F'VE)g(VE)AZ A Az, >1 + Z — f(VE) = f(VE)g(VE)AZ,)

0<s<t 0<s<t




Since M is a square integrable martingale with expectation 0 and since s — f'(V:")g(V)
is bounded because of f € S(R), the process t — f(O,t] f(VE)g(VE)dM; is a martingale
with expectation 0 (e.g. [32, Prop. 2.24]). Hence we conclude

L= [ B[] ds
(0,4]

+E

Y (FVE+9(Vi)AZ) — f(VE) - f’(‘ém_)g(‘é”i)AZsﬂmzsg)]

0<s<t

= [ B ]
+E [ /m,t] /R PV +9(VE)2) = FVE) = F(VE)g(VE) A k<) Vz<dz)ds] ,

where we used the compensation formula (e.g. [24, Thm. 4.4]), which may be applied since
E figy o | (V2 + 9(VE)2) = FVE) = f/(VE)g(ViE )2l | vz(dz)ds is finite by ().
Using the continuity of s — V¥ at s = 0 and again the bound from (B.6)), it follows from
Lebesgue’s dominated convergence theorem that

'L = £ (2)g(e)z + [ (Fot9(0)2) = 1(0) = F)gla) ) va(ds).

RQ

For the second term in Equation (3.7]) observe that by [I8, Eq. (4)]

Ve Ve — [:c+ [ sz [ g<v;>dzu]
(07'] (07'} S

= [ avdiz 2 v )"
(0,5]
and since [Z, ZT|¢ = Azu it follows

=58 | [ e Az g )" dul.

(0,¢]

Together with the obtained formula for I;, and inserting the definition of ¢ and Z, this
shows that limy_,o ¢~ !(I; + II;) is given by the right hand side of (B.4)). Since V is a Feller
process, and since the right hand side of (8.4 is in Cy(R) for f € S(R) by (B.0]), this
pointwise limit is actually uniform in z (e.g. [36, Lem. 31.7]), so that S(R) is contained
in the domain of the generator of V and that AV f is given by ([3.4) for all f € S(R).

(iv) We now show that S(R) is a core for AV under the extra assumption that FU?
oo and EL? < oco. Denote Ay = E(U); and B, = E(U), Lf(07t}5(U)§1d778- Then B,
f(O,t] E(U)s—dLg by 4, Lem. 3.1]. Then FA? < oo and EB? < oo as a consequence of

Il A



Proposition 3.1 and Lemma 6.1 in [3] together with [36, Thm. 25.18]. We conclude that

8822 Tif(z) exists for f € S(R) and that
0 T _ 9 Elf(A B))] = E[Af'(A B d
8_:Etf(x) = o [f(Aw + By)] = E[A f'(Awx + By)]  an
2 2
T npw) = LBl B = ELA (A + B

82
Since FA? < oo, the mapping x — WTt f(z) is obviously continuous, so that T;S(R) C
x
C*(R) N Cy(R). Using that E|B;| < oo and limyy_, |y f'(y)| = 0 for f € S(R), we further
see by dominated convergence that

0

IA

E[|Axf (Aw + By)l]

E[|(Awx + By) f'(Awx + B[] + E[| Bef (A + By)]
— 0, as|z|— oo.

IA

02
In the same way one can check that |z?—=—T,f(z)| — 0 as |z| — oo such that T;S(R) C

02
S(R). By [13, Prop. 1.3.3] we thus obtain that S(R) is a core for AV, provided that
EU? < 0o and EL? < cc.

(v) Now we drop the assumption that FU? + EL? < oo and show that S(R) is a core
for AY. Similarly to the proof of Theorem 3.1 in Sato and Yamazato [38], for f € S(R)
denote the right hand side of ([B.4]) by Gf(x) and define

Gof(@) = F(@)w + ) + @)% + 2000: + o)

+/{ . (f(z+ 221 4 20) — fx) = f'(@)(x21 + 22)1)5<1) vu,n(dz, d2zs).
For f € Cy(R), denote further
Wf(x) ::/ (Flz+ 221 + ) — F()) vus(d=n, d2s).
{z€R:|2|>1}

Then W : Cy(R) — Ch(R) is a bounded linear operator, and from (iii) we know that
AVf = Gf = G0~f + TZV f for f €~S§R). Consider the process V(o) defined by Vg , =
T + f(o q V(f)),k dU, + L;, where (U,L)T is a Lévy process with characteristic triplet
(fyZ,AZ,]l‘ZElyZ(dz)) Again by (iii), Gof = AYOf for f € S(R), and from (iv) we
knol that S(R) is a core for AY®, so that the closure Gy of Gy is AV, in particular

D(Gy) = D(AY®). Since Gf = Gof +Wf for f € S(R) and W is bounded it follows
that the closure G of G satisfies G = Gy + W, in particular D(A"©®) = D(G,) = D(G).
Since AV is a closed operator, we further know that D(G) c D(AY) and that A" is a
closed extension of G. From the Hille-Yosida theorem (e.g. [I3| Thm. 1.2.6]) it follows that



for every A > 0, A\Id — Gy : D(AY®) = D(Gy) — Co(R), f +— Af — Gy f is a bijection with
bounded inverse (the resolvent) satisfying ||[(AId — Go)~t| < AL For Ao > ||[W]|, it then
follows from a perturbation result for closed linear operators (e.g. [19, Thm. IV.1.16]),
that also \gId—G = A Id—Gy—W : D(G) = D(Gy) — Cy(R) is a bijection with bounded
inverse. Since AV is a closed extension of GG and also \gId — AV : D(AY) — Cy(R) is a
bijection (e.g. [I3, Prop. 1.2.1]), we must have D(G) = D(A") and hence G = AV. This
shows that S(R) is a core for AY.

(vi) Finally, we show that C?(R) and C°(R) are cores for AV. Let h be a function in C°
with h(z) = 1if || < 1 and h(x) = 0 if |x| > 2. Define h,(x) = h(z/n) and for any
f € S(R) set f,(z) = f(x)h,(z). Then f, € C*(R) and we obtain that f,, — f, fi — f',
fr— " xfl(x) = xf (x), of(x) — zf"(z) and 2*f/(z) — x*f"(x) uniformly in z
as n — 00. In particular, with K7(-) as defined in (8.5]), we see that Ki(f,) is bounded
in n and hence we conclude with (3.6)) that AV f, — AV f uniformly as n — oo. This
shows that C%(R) is a core for AV Finally, for f € C?(R) there are functions g, € C>°(R)
with uniformly bounded supports such that g, — f, ¢/, — f" and ¢/ — f” uniformly as
n — 00, hence also zg/,(z) — zf'(x), xg!(x) — xf"(x) and z?¢”(x) — 2 f"(x) uniformly
in z as n — oco. Again, this gives AV g, — AV f uniformly as n — oo so that C*° is a core
for AV, O

The following corollary is immediate from Theorem [B.11

Corollary 3.2. In the setting of Theorem[3.1, if U and L are additionally independent,
Equation (34) simplifies to

AVf(@) = F@aw )+ 5 @)k + o)
+ [t an) = 1) = F@aytye)(dy)
+ [ (as0) = £@) = Fatyevn(a)
= AYf(@)+ P @ + 3 @)} (3.8)

+ /R(f(x +ay) — f(x) = f(x)zyly<)vo(dy).

Corollary 3.3. Let (&)i>0 and (n:)i>o0 be two independent Lévy processes and let (V*)i>o
be the generalized Ornstein-Uhlenbeck process driven by (£,m)T with starting point x as

defined in (Z11). Then (V;")i>o is a Feller process whose generator has a domain containing
S(R), and S(R), C?(R) and C>(R) are cores for AY. For any f € S(R) the generator
can be written as

AVf() = Af(@)~ f@ae (@ + f)n)od (3.9)

+ /R(f(xey) — f(@) + f(@)aylyy<i)ve(dy).
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If f € S(R) and f(0) = 0, define f(z) = f(e%) and f(zx) = f(—e). Then f,f € C2(R) C
D(A™%), and for such f Equation [33) can be rewritten as

AV f(x) = AT f(2) + A~ flog 2)1as0 + A~ F(log |2]) Le<o. (3.10)

Proof. Since (V;*);> fulfills (3:3) for (U, L)T defined in (2.3)) the Feller property as well as
the statements on the domain and cores of the generator follow directly from Theorem [3.1]
Also observe from (23)) that in the independent case we have 1, = L; and thus A7 = AL
whereas the relation between & and U yields vy ((—oo, —1]) = 0. In [4, Lem. 3.4] we have
computed the characteristic triplet of ¢ in terms of the characteristic triplet of U (the U
used there is equal to & whenever vy ((—oo, —1]) = 0). Using these relations one obtains
B39) from (B.8) by standard computations.

Finally the fact that f, f € C2(R) if f € S(R) such that f(0) = 0 and the validity of
(BI0) may be checked directly from (B.I) using the definitions of f and f. O

Remark 3.4. In [23] the exponential functional for independent processes & and n is
studied. Under the condition of finite first moments of & and n, the authors prove that
for suitable functions f with support on the positive half line the generator of the GOU
process can be written as

AY f(z) = A4 f(log2) + A"f (x) (3.11)

where f(z) = f(e") and A~¢ and A" are the generators of —¢ and 1 respectively. Remark
that the & used by the authors corresponds to —& in our notation. The formula (B.I1]) for
positive x is also obtained in [, Proof of Thm. 1].

4 Relations between the exponential functional and
the driving Lévy processes

It is basic knowledge in the theory of Markov processes (see e.g. [I3| Prop. 4.9.2]), that if
1 is an invariant measure for the Markov process X with strongly continuous contraction
semigroup T; and generator A, i.e. if u(B) = [ p(z, B)u(dx) for all Borel sets B, then

/R Af)pldy) =0 Vf € D(A) (4.1)

Conversely, if (4.1]) holds, u is an invariant measure under some additional conditions. In
the special case of Feller processes Equation (41]) holds if and only if p is an invariant
measure of the corresponding process X [26, Thm. 3.37].

In [10] and [I1] the authors make use of Equation (A1) to obtain the density of a specific
stationary generalized Ornstein-Uhlenbeck process. More precisely they obtain the density
of the exponential functional in the special case that ¢ is a Brownian motion with drift
and 7 is deterministic.
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Let (Vi)i>0 be a GOU process as defined in (2.1]) or even a process as defined in (2.4)),
fulfilling the SDE (2.2), with vy ({—1}) = 0. Assume that U and L are independent, i.e. the
generator of (V;):>¢ is given by (8.8)) for f € S(R). Let u = £(V,) be the invariant measure
of (V4)i>0, assuming its existence. Then by (&I)) we obtain for any f € S(R) C D(AY)

0 = [ A fn()
) /ALf< ) +7U/f Hrnlde) ¥ /f" z)a’ p(dz)  (42)
//R\{ .y fla+ay) — f(x) — f(2)zyly<)ve(dy)p(dr).

This and the previous results allow to establish relationships between the characteristic
functions of V., U and L, as done in the following. Recall that 1y (u) = log E[e™X1] is
the characteristic exponent of the Lévy process X.

Theorem 4.1. Let (U)o and (Lt)i>o be two independent Lévy processes with vy ({—1}) =
0 and such that V, = fOOOE(U)s,dLs converges to a finite random wvariable. Then p =
L(Vy) is the invariant law of the process (Vi)i>o defined by (2.4).

Let h € CP(R) be such that h(x) = 1 for |x| < 1 and h(x) = 0 for |x| > 2 and set
ho(z) == h(%£) and f(z) = ™, fu(x) = f(x)hn(z) for u € R. Then

s = (< [afinn - % [ 216 (43)
~ [ [t ) - 1o - asyf,a(:c)]ly|g1>uU<dy>n<das>) .
If additionally E[VZ] = [; 2* p(dx) < oo, then
il

r(wdv(u) = —iuyE [Vae™"™] + =5

_ / (v (1 + 1)) — brae () — UE [Vaot™=] yl 1) s (dy)

E [VZeV=] (4.4)

aUu

= —upd, () — T2 (u) (4.5)
- / (6ve (u(1 + y)) — v () — uy_ (1) v (dy)
= —E[e""¢y(uV)] (4.6)

Equation (4.6]) can also be written in the compact form
E [(Wu(uVi) + ¥r(u)e™>] =0 VueR

For the proof we need the following lemma. We use the notation S(R;C) to denote the
class of complex valued functions f : R — C such that R(f) € S(R) and I(f) € S(R).
Spaces like C*°(R; C) are defined similarly. For a generator A we also write

D(A;C) :={f € G(R; C) : R(f), 3(f) € D(A)}.

12



It is clear that (B.8]) and hence (4£.2)) remain valid for complex valued functions f € S(R; C).

Lemma 4.2. Let (L;)¢>0 be a Lévy process in R with generator A*, 11 a fized finite measure
on (R, By) and define h, h,, f and f, as in Theorem[J1. Then f, € C=°(R;C) C D(A*;C)

and

n—o0

i [ A%, (a)n(de) = vn(a) [ tde) = vulw)itw)

Proof. 1t is clear that f,, € C*(R;C). From (B]) we obtain

/RALfn() /f d:v+—/f”

[ [+ 0) = 1o = @ty vldy) n(da)
R JR
By Taylor’s formula, there are (3, € [—|y], |y|] such that

| ful +y) = ful) = fr(@)yTiy <]
< fale+y) = fu(@) Liyse + 27 [[(RE) (2 + GO+ (S (@ + ) 9 Ly <1
< 2| fallLigst + 1Ay 1y <1

Computing the first two derivatives of f,, one easily sees that they are uniformly bounded
in n. Since additionally lim,, ., f,(x) = tue™® and lim,, ., f”(x) = —u?e™* we obtain via
dominated convergence

2
lim [ ALf(2) p(de) = fYL/iuei”I p(dx) — @/u%wz (dx)
R R

+ / / () — e — jue" Yl <1) vi(dy) p(de),
R JR

which gives the claim. O

Proof of Theorem[{.1]. Since fot E(U)s_ dLs converges almost surely to the finite random
variable V,, as t — oo, p = L(V,,) is the unique stationary marginal distribution and
hence invariant law of V' by [4, Thms. 2.1 and 3.6]. Equation (£3) then follows directly

from (4.1]), (£2]) and Lemma [£.2]
To show (@4]), observe that by Taylor’s formula there are (i, (s € [—|zy|, |zy|] such that

| ful@ + 2y) — fulz) — 2y fo(z) <)
< fal@ +ay) = fo(@)| Liysr + 27 R (2 + GO+ (S (@ + )| ] 27y <
< 2 fallLst + 1 f0 2%y Ly <

Equation (4.4) then follows directly from (4.3) by dominated convergence and Fubini’s
theorem, observing as in the proof of Lemma that f,, and its first two derivatives are
uniformly bounded in n. Finally, Equations (41) and (46]) are immediate consequences

of ([@.A4). O
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For GOU processes driven by (£,n), Theorem [4.1] gives the following.

Corollary 4.3. Let (&)i>0 and (n:)i>0 be two independent Lévy processes such that Vy, =
fooo e~%=dn, converges to a finite random variable. Then pu = L(Vy,) is the invariant law
of the GOU process (V;)i>0 driven by (£,1)" as defined in ([2.1)).

Let h € C*(R) such that h(z) = 1 for |z| < 1 and h(x) = 0 for |x| > 2 and set
ho(z) == h(2) and f(x) = ™, fo(z) = f(x)hy(x) for u € R. Then

2

o) =t (e [ enitoutao) = % [ @12+ epio) utan) @7

_ /R /R (fnu»e—y)—fn<x>wyf;@mylgl)yg(dy)u(dx)).

If additionally E[V2] < oo, then

2
3

Un(Wdve(u) = eudy, (u) — 5 (Woy, (u) +udly, (u)) (4.8)

- / (v (™) — v () + uy () 1<) ve(dy).

Proof. This follows directly from Theorem [.T] and the relations between (U, L) and (&, )
as given in (2.3]) and [4, Lem. 3.4], or alternatively using (8.9) and arguments as in the
proof of Theorem [4.1] O

Observe that for £ being a compound Poisson process Equation (4.8)) immediately gives

(T2).

Remark 4.4. Carmona [4, Thm. 2] obtains a formula related to ([AS8]) under certain,
more restrictive assumptions. In particular, it is assumed in [9] that e admits a strictly
positive density on some interval (0,r;) for some v, > 0. In the special case that n is a
compound Poisson process without negative jumps and & is a Brownian motion with drift,
formula (E8) has already been obtained by Nilsen and Paulsen [33, Prop. 2/, stated for
Laplace transforms.

Remark 4.5. Let n be a subordinator, & a Lévy process independent of n, and suppose
that Vy = fooo e~ dn, is almost surely finite. Then Ve > 0, and we can also use Laplace
transforms in the above derivation. More precisely, let (U, L)T be given by [23), so that
L = n by independence and e~% = E(U);, where vy((—oo,—1]) = 0. Denote the Laplace
transforms of n = L and V for w > 0 by L,(u) = Ly(u) = Ele "] = ¢,(iu) and
Ly, (u) = Ele™"V*], respectively. Let f be a function in S(R) with f(x) = e x > 0,
then f is in D(AY) for u > 0 and a direct computation starting from ([E2) yields the
following analogues of ([E4l) and ([AR)) without any further moment restrictions on the
distribution of V.

log Lz (u) = log L, (u)
E [Vooe*“V“] otu? B [Voie*“VW]
Ly, (u) 2 Ly, (u)

= U

14



_/ (LVOO (u(l1+y)) 1+ uwyﬂ|y<l> vy (dy)
(=1,00) i

Ly, (u) Ly, (u)
_ E [Voe V] B of (E[Vie V=] . E [Vae V] y
¢ Ly (u) 2\ Li.(u) Ly, (u)
Ly, (ue™) E [Voce™ ]
_/R (ET(?L) —-1- UW?/ﬂlyQ) ve(dy), u>0.

The formula given in Corollary will be useful in determining £(n;) from £(V,,) and
L(&1) as observed in Theorem 5.1 below. For the determination of £(&;) from £(V,,) and
L(n1), the following relation between the characteristic triplets of £, L and the character-
istic function of log |V | will be helpful.

Theorem 4.6. Let (&)i>0 and (n:)i>0 be two independent Lévy processes such that Vi, =
fooo e~%=dn, converges to a finite random variable and such that 1 is not the zero process.
Then u = L(Vy) is the invariant law of the GOU process (Vi)e=o driven by (€,n)T.

Let h € C(R) such that h(z) =1 for |z| <1 and h(x) =0 for |x| > 2 and set h,(x) =
h(Z£) and for x # 0 and u € R define f(x) = e™°el*l and f,(z) = ™8 l*Ip, (log |z]) with
fn(0) =0. Then

Uog(u)brogvaci(u) = — lim [ A"f, (x)pu(dx) (4.9)

— lm (—% [ fuantas) - % [ i@t (4.10)

~ [ [t ) = £ue) = ROt (i) ).
If additionally E[V_?] < oo, then

Y_e(U)Prog|ve.| (1) (4.11)

(iu +u*)E [V’2e“‘ log |V°°|]

oo

— _Zu,YnE [Vfleiulog\vooq +

o0

_/ (E [eiulog\\/oo-l—y\] — B [eiulog\\/ooq —zuyE [Vozleiulog\voo\] ]l\y|§1) Vn(dy)
R

Proof. Observe that obviously f, € C°(R; C) and thus f, € D(AY; C)ND(A”; C). On the
other hand we obtain for f(z) = f(e”) and fu(v) = fu(e®) that f(z) = ™ and f,(z) =
f(x)hn(:c) and hence f, € CX(R;C) C D(A5C). Similarly for f(;z:) = f(—€") and
fa(@) = fu(—e*) we have f(z) = ™ and f,(z) = f(z)h,(x) and also f, € C=(R;C) C
D(A~%;C).

Since ©({0}) = 0 by [6l, Thm. 2.2], we obtain from (B.I0) and (4.1

0 = / AV £, (2)u(dz)
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= [ An @) + /( A og () + | A fogleln(da)

(70070)

Setting S7 : (0,00) = R,z +— logz, and S5 : (—00,0) — R,z — log(—x), we compute
using Lemma

T ( /(Om) A7, (log a)u(da) + /( A |x\)u(d:€))

= lim ( /R A fu(y)dS (10,000 (¥) + / Agfn(y)dSQ(m(_oo,m)(y))

n—oo R

= _e(u) ( /R S, (1)(0.00)) (y) + /R ei“dez(m—oovo))(y))

_ w_ ( iulogx dr) + tulog |z| d )
) ([ ety [ g
- w—f(u)gblogﬂ/oo\(u)

which yields (£9]) and ([£I0) via (3]).

Now assume that E[V?] < co. We have fa(z) = € h, (z) and f,(z) = fn(Nlog |z|) for all
z € R. In particular, f/(z) =z~ f! (log|x|) and f/(z) = 272(f"(log|z|) — f!(log|z|)) for
x # 0. For |y| > 1, we further have |f,(z +y) — f.(z)] < 2||h]| < oo, and for |y| < 1 such
that zy(z + y) # 0 there are (y,...,(s € R by Taylor’s theorem such that

oz +y) = fulz) = f(2)y]

fallog |z +yl) = fullog|a]) = f,(log|a|)ya""

< |Futtoglal) + ya) = fulloge]) — fiog |])ya ™|
+ | fullog |z] +log [1 + ya™'|) = fu((log |2]) + ya ™)

= 271 |(RA)((og [a]) + C)y*= 2| + )(?R ) ((0g [2]) + y2~" + &) (log |1+ ya ™' —ya™")
+271 (S ((og J2]) + G)y*a 2| + )(9 2)((log |z]) + ya ™" + ) (log [1 + ya ™' — yz ")

< | flly*e? + I f I CyPa?
for some universal constant C. Since || f, ||, | f.|| and || f”|| are uniformly bounded in n,
since p is continuous (cf. [6, Thm. 2]) so that (v ® p)({(z,y)T € R? : 2y(z +y) = 0} = 0,
since [, #7%pu(dx) < co by assumption and since f,, f} and f converge on R\ {0} to f,

f"and f”, respectively, by dominated convergence the right hand side of (£I0) is equal
to

[ (=306~ 6~ [ (1)~ 1) = £ 0420 ) ) i),

which gives (4.1T]). O
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5 Injectivity

Let £ = (&)i>0 and (1;)s>0 be two independent Lévy processes such that Vi, := fooo e~ dn,
converges almost surely. By [12, Thm. 2|, this implies that £ drifts to +00. As in the in-
troduction, for a Lévy process (&;):>0 such that & — 400 a.s. as t — oo denote

D¢ :={L(m) : n Lévy process, independent of &, such that / e~%~ dn, converges a.s.}
0
and consider the mapping
Qe : D = PR), L(m)—L </ e 5 dns) , where n and ¢ are independent.
0

Here P(R) denotes the set of probability distributions on (R, B;). For a Lévy process
(n:)¢>0 denote further

Dn = {L(&) : £ Lévy process, independent of 1, such that / e~%~ dn, converges a.s.}
0

and define (i)n by

®,: D, = PR), L(&)— L (/ e 8- dns) ,  where 1 and ¢ are independent.
0

We are interested in injectivity of the mappings ®¢ and én, or at least in injectivity of
these mappings when restricted to certain subsets. A key result for these investigations
will be the following theorem, which follows immediately from (£.7)) and (4£.10), by dividing
by ¢v.. (u) and ¢ieg|v..|(u) when different from zero, which is always the case for u in a
neighborhood of zero.

Theorem 5.1. Let (§)i>0 and (n:)i>0 be two independent Lévy processes such that Vi, ==
fooo e~ dn, converges almost surely. If ¢y, (u) # 0 for u from a dense subset of R, or if
L(m) is uniquely determined by the values of its characteristic function in a neighborhood
of the origin, then L(my) is uniquely determined by L(Vy) and L(&1). Similarly, if n is
not the zero process and ¢iog|v..|(w) # 0 for u from a dense subset of R, or if L(&) is
uniquely determined by the values of its characteristic function in a neighborhood of the
origin, then L(&) is uniquely determined by L(Vs) and L(m).

It is well known (e.g. [29]) that not every distribution is characterized by the values of
its characteristic function in a neighborhood of the origin. This remains true for infinitely
divisible distributions. To see this take two different distributions p; and po without atoms
at 0 whose characteristic functions coincide in a neighborhood of the origin and consider
the corresponding compound Poisson distributions with Lévy measures p; and ps. These
are both infinitely divisible and their characteristic functions exp(/i;(u) — 1) coincide in a
neighborhood of the origin.
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We do not know if the characteristic function of the stationary distribution of a GOU
process cannot vanish on a non-empty open interval. As shown by Iinskii |14, Cor. 1], a
set A C R is the zero set of some characteristic function if and only if A is closed, does not
contain 0 and is symmetric with respect to the origin. Hence, a priori there is no reason
why ¢y, appearing in Theorem [5.1] should not vanish identically on some interval.

Still, it is possible to give some sufficient conditions. We start with the following lemma,
which is a minor reformulation of results in Kawata [20] and Lucasz [30].

Lemma 5.2. Let X be a random variable with law v and assume that there is some € > 0
such that EesX < oo or Ee *% < oo. Then the characteristic function ¢x = i cannot
be identically zero on mon-empty open intervals. Furthermore, if Y is another random
variable whose characteristic function coincides with that of X in a neighborhood of 0,

then L(Y) = L(X) = u.

Proof. Without loss of generality assume that Ee *X < oco. Then g(z) := FEe*¥ can
be defined for all z € C such that 0 < 3z < ¢, it is continuous there and analytic in
0 < 8z < e. That ¢x cannot be identically zero on non-empty open intervals then follows
from [20, Cor. 1.14.1]. Let Y be another random variable such that ¢y (u) = ¢x(u) for
all u € (—a,a) with some a > 0. Since ¢y (u) = limy o g(u + iy) for u € (—a, a), it follows
from [30, Thm. 11.1.1] and its proof that Fe™=¥ < oo. That £L(Y) = £(X) then follows
from [20, Thm. 9.6.2]. O

Define I D™ to be the set of all infinitely divisible distributions £(r;) which are symmet-
ric, and I D®® to be the set of all infinitely divisible distributions whose Lévy measure v,
has some one-sided exponential moment, i.e. for which there is € > 0 such that

00 -1
/ e vy(dr) < oo or / e v, (dr) < 0.
1 -

[e.9]

Denote
Dzym’e"p = DN (ID¥™ U ID®P), Dzym = DN IDY™  and DEXP = D N ID*P.
With these notions, we get the following result:

Theorem 5.3. Let (§;)i>0 be a Lévy process such that & converges almost surely to co as
t — 00. Then ((I>§)|Dzym,exp is injective and

De(D™) A Be(D \ DE™O) = 0.

If additionally & is spectrally negative, or & = qN for some constant ¢ > 0 and a Poisson
process N, then ®¢ is injective on De.

In the special case when & = t, we have a spectrally negative £, and we recover the well
known result (e.g. [L6, Prop. 3.6.10]) that ®,,_; is injective.
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Proof of Theorem [5.3. 1f £ is spectrally negative, then V,, = fooo e~%- dn, is self-decomposable
by Remark (ii) to Theorem 2.2 in [6], hence infinitely divisible so that ¢y, _(u) # 0 for
all v € R. Injectivity of ®¢ then follows from Theorem Bl If £ = ¢gN; for ¢ > 0 and

a Poisson process N, then by Example [1l we can write Voo = > 0g e “(nn,, — 1),
where (nr1,,, — 01, )i=0,1,2,... is i.1.d. and infinitely divisible by [36] Thm. 30.1]. Hence V is
infinitely divisible, and injectivity of ®, follows from Theorem [G.1l

Now let £ be an arbitrary Lévy process drifting to infinity. If £L(1n;) € D¢ N ID®P, then
there is € > 0 such that Fe*” < 0o or Ee " < oo (cf. [36, Thm. 25.17]), and Theorem [G.1]
and Lemma [5.2] show that (<I>§)|szp is injective and ®¢(D;") N ®¢(De \ D) = 0.

Finally, let § be an arbitrary Lévy process drifting to infinity and £L(n;) € D™, Condi-
tioning on &, for f in the Skorokhod space D([0,00),R) of cadlag functions, we have

(Viele = 1) = /O 1O dy,

which converges for Pg-almost every f. For such f, fooo e~ dn, is infinitely divisible
(e.g. Sato [37]), and hence E(e™">|¢ = f) # 0 for all u € R. Since [~ e~ /® dn, is also
symmetric, E(e™V=|¢ = f) is real valued and continuous in u and hence strictly positive
for all u € R. It follows that

D (1) = / E[e"=|¢ = f] Pe(df) >0 Yu€eR.
D(]0,00),R)

Theorem B.1] then shows that (®¢)|pp= is injective and @¢(D™) N @¢(De \ D) = 0.
This finishes the proof. O

Remark 5.4. Theorem[5.3 shows in particular that if § is arbitrary (but drifting to +00),
and n 1is spectrally positive or negative (which applies in particular if n is a subordinator
or the negative of a subordinator), then the distribution of m is uniquely determined by

L(Vy) and L(&).

Let us now turn to injectivity properties of (i),]. We start with the following lemma, which
is immediate from Lemma

Lemma 5.5. Let X be a random variable which has no atom at 0 and assume that there
is € > 0 such that E|X|* < 0o or E|X|™® < co. Then the characteristic function dig x|
of log| X| cannot be identically zero on non-empty open intervals.

Examples of random variables X with finite negative fractional moment E|X|™® < oo are
given by random variables which have a density f in a neighborhood of zero such that
f(z) = O(z*) as |z| — 0 for some o > ¢ — 1. In particular, if £(X) is a self-decomposable
non-degenerate distribution, then X has a density satisfying this condition for some ¢ > 0,
which follows from Theorems 28.4, 53.6 and 53.8 in [36]; observe that this is trivial if X
has a non-zero Gaussian component. Hence, whenever X # 0 is self-decomposable, then
®log| x| cannot be identically zero on non-empty open intervals.
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Other examples are given in the next lemma, which shows that fooo e %= dn, will always
have certain negative fractional moments if 7 is a subordinator with strictly positive drift,
or if n has a non-trivial Brownian motion component. This complements [31], Lem. 2.1]
and 23, Lem. 3.3] who assume ¢ to have finite mean.

Lemma 5.6. Let & and n be two independent Lévy processes such that V,, = fooo e~ dn,
converges almost surely. Suppose that n is a subordinator with strictly positive drift, or
that the Brownian motion part of n is non-trivial (i.e. o2 > 0). Then E|Vy|™® < oo for
every € € [0,1). In the latter case (i.e. when o7 > 0), Vi has a bounded density on R.

Proof. Suppose first that  is a subordlnator with strictly positive drift 70 Let € € (0,1).

Define the Lévy process & by & = ZO<S§7|A§S|>1 AE,. Let 7 be the time of the first
jump of & whose size is greater than 1 in magnitude. Then

INT
VOOZ%S/ o ds>7(1/\7)exp<— sup ISI)
0

0<s<1

Since 7 and & are independent and 7 is exponentially distributed (or 7 = 00), it follows
E(1AT)™° < 00 and Eexp (esupgc,< [€2]) < oo (cf. [36, Thms. 25.17, 25.18]), so that
EV_® < oo if n is a subordinator with strictly positive drift.

Now suppose that n is a Lévy process such that as > (. Denote the Brownian mo-

tion component of n by B, so that B and n — B are independent Then the condi-
tional distribution of V., given & = f 1s given by f e Tt dB, + f e~ ) d(n, — By).
But f e/t dB, is N(0, 02 fo %) ds)-distributed, hence its density is bounded by
27?02 I > em2() dg)~1/2 Hence also (V |€ = f) has a density, g; say, which is bounded by
27?02 JoT e ds)=1/2 Tt follows that Vi has a density given by z — fD ([0.00) gr(x) Pe(df),

and since
0o ~1/2
< / e % ds)
0

% ~1/2
/ <27r03/ ezf(s)ds) Pe(df) = (27ra$)’1/2E
D([0,50)) 0

by the part just proved, this density is bounded on R. This then also shows that E|V,|~¢ <
oo for all € € [0,1). O

< 00

Recall that I D®*P denotes the set of all infinitely divisible distributions whose Lévy mea-
sure has some one-sided exponential moment. Denote

DeXlD D N ID"P.

We can now prove the following injectivity result regarding CTD,,:

Theorem 5.7. Let ) = ()0 be a non-zero Lévy process. Then (®,)
and

= 18 1njective
DgxP )

o, (D) N @, (D, \ Dy®) = 0. (5.1)
If additionally n is a subordinator with strictly positive drift, or if the Brownian motion
part of n is non-trivial (i.e. 0727 > 0), orif n is a compound Poisson process without drift
such that v,((—o0,0)) =0 and fol 2% v, (dx) < 0o for some e > 0, then ®, is injective on
D

n-
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Observe that [),efp contains all L(&;) € lND,] such that £ is spectrally negative or spectrally
positive. In particular, subordinators are uniquely determined by £(V,,) and L(n;).

Proof of Theorem[5.7. The injectivity of (i)n on ﬁg"p as well as (B.0)) are clear from The-

orem [b.J] and Lemma [5.2l Similarly, injectivity of CTDW on Dn follows from Lemmas [5.5]
and Theorem [B.1]if 7 is a subordinator with strictly positive drift or if 03 > 0.

Finally, let us prove injectivity of (i)n when 7 is a compound Poisson process with v, ((—o00,0)) =

0 and fol r~°v,(dx) < oo for some £ > 0. Denote by T the time of the first jump of 7.
Then

o0

Voo = / e dn, = e T Anp 4 e / e C==8) dp, = e T (Anp + V) as.,
0 T

since £ and 7 almost surely do not jump together. The random variable V has the same
distribution as V,, and is independent of (e7%7  Anr). Observe further that also &y and
Anr are independent. It follows that

Drog Ve (u) = b—gr (u) ¢log(AnT+v;o)(u)7 u e R

Since
E(Anr + V) < E(Anr) ™ < o0

as a consequence of VI > 0 and fol r™°vy(dr) < oo, it follows from Lemma that
Prog(Anr+vz) cannot vanish identically on non-empty open intervals. Since ¢_¢, (u) # 0 for
all w € R as &7 is infinitely divisible, it follows that ¢,1,, cannot vanish identically on
non-empty open intervals. Injectivity of <f>,7 then follows from Theorem [5.11 O

We do not know if ®¢ and (T)n will always be injective, but as we have seen in Theorems
and 0.7, the mappings ®, and (i)n are injective in many cases. However, if we drop the
condition of independence of £ and 7, an injectivity result does not hold, as shown in the
following. Therefore, additionally to the definitions at the beginning of this section, for a
Lévy process &, let

Dgep := {L(x1,m) : (x,n) biv. LP such that [;~ e = dn, converges a.s. and L(x1) = L(£1)}

and define the mapping

égep : Dgep — P(R), L(xi,m)—L (/ e X dns) .
0

Then we obtain the following counterexample of injectivity.

Example 5.8. Let £ = N be a Poisson process. Then q)gep 15 not injective.

Proof. Let (x,n) be a bivariate Lévy process such that L(x1,71) € Dgep. By [12, Thm.

2], this means L£(x1) = £(&) and Elog™ |n;| < oo. Denote the time of the first jump of y
by T'= T'(x). Then

/ e X dy =nr +e ! / e~ dy. (5.2)
0

T
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Since f;o e~0a==x7) dn, has the same distribution as fooo e Xt—dn, =: W, it follows that
the characteristic function ¢y of W satisfies

ow(x) = [[ dne(e¥2), zeR
k=0

as shown in [5]. Thus, £(W) is determined by p,., := L(nr) (not necessarily vice versal).
Now let (x(,nM) € Dgep be such that ™ is independent of Y™, n(V) is not the zero
process and Elog™® |n(T1()X(1))| < o0, and let (x®,7®) be a bivariate compound Poisson
process without drift and Lévy measure

VX(Q)JZ(Q) (dl‘, dy) = 51 (dIL‘)pX(1)m(1) (dy)

Then (x?,n?) € Dgep and

2
Pr(@ p2 = ﬁ(ﬁ(T()X@))) = PxW M-

It follows that both (x,n™M) and (x®,7®) lead to the same distribution, giving an
example that injectivity is violated. O

6 Ranges

The results of the previous section may now be used to determine information on the
ranges of the mappings ®¢ and ®,, as defined in Section bl We start with an elementary
conclusion, which also follows from [6l Thm. 2.2] or [3, Lem. 3.1].

Proposition 6.1. Let { be non-deterministic, then ®¢(De \ {£(0)}) is a subset of the
continuous distributions. Analoguously, if n is non-deterministic, then the range of ®,, is
a subset of the continuous distributions.

Proof. Tt follows directly from [I, Thm. 1.3] that the distribution of the treated exponential
functional fulfills a pure type theorem, in particular it is either continuous, or a Dirac
measure. Suppose that L; = 1, # 0. Inserting the characteristic function ¢(u) = e™*
k € R, of a Dirac measure in (£.6)), one immediately obtains ¢, (u) = —ty (ku) which can
only hold for deterministic processes L; = —kU; = ~.t with k # 0 and hence deterministic

7 and &. 0

Recall the definition of égep from the previous section. Also recall that a distribution u
on (R, B;) is called b-decomposable, where b € (0, 1), if there exists a probability measure
p on (R, By) such that ji(z) = (bz)p(z) for all z € R.

Proposition 6.2. Let ¢ = N be a Poisson process. Then the range of q)?ep 1s the class of
all e=t-decomposable distributions.
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Proof. That all distributions in the range of (Pgep are e~ '-decomposable is clear from
(5.2). Conversely, let L(W) be an e !-decomposable distribution. Then there exists an
i.i.d. noise sequence (Z,)nen, such that

Ze_kaiVV, n — oo, (6.1)

k=0

which follows by iterating the defining equation W L e YW + Z with W' independent of
Z for e~ '-decomposability. Hence Y }'_, e"Z; converges in distribution and hence almost
surely as n — oo and the Borel-Cantelli-lemma implies that Z; must have finite log™-
moment. Now define the compound Poisson process (,n) without drift and Lévy measure

Uy n(dx, dy) = 01(dx)L(Zy)(dy).

Then L(x,n) € Dgep (due to the finite logt moment of Z;), and with the notations of
Example 5.8 it follows that L(nr()) = £(Zy). Hence (P?ep(ﬁ(x, n)) = L(W). O

Proposition 6.3. Let £ = N be a Poisson process. Then the range of ®¢ is a subset of
the class of infinitely divisible e=*-decomposable distributions without Gaussian part.

Proof. By Proposition it remains to show that W = f(o 00) e~Ns=dn, is infinitely divis-
ible and has zero Gaussian part. Therefore denote the time of the first jump of N by T,

then Zy := nr is infinitely divisible without Gaussian part as a consequence of [36, Thm.
30.1]. Hence by (6.1)) also W is infinitely divisible and the Gaussian part of W is zero. [

It is well known that the OU process is a Gaussian process whose stationary distribution
is normally distributed. In particular f(O,oo) eto?/ 2d(cW;) for W; a standard Brownian
motion (Wiener process) is standard normally distributed. The following theorem shows
that this is the only possible choice of (£, 7)? which leads to a centered normal distribution.

Theorem 6.4. Let & and n be two independent Lévy processes such that fooo e~ dn,
converges almost surely. Let v > 0. Then L(Vy) = N(0,v?) if and only if there is v¢ > 0
such that & = et and 1, = (275)1/211Wt, where (Wy)e>o is a standard Brownian motion.

Proof. That L£(V,) = N(0,v?) if £ and n are as described is well known and follows as
discussed above. Let us show the converse and assume that V., is N (0, v?)-distributed.
By replacing n by v~'n we may assume that v = 1. Inserting ¢v._(u) = e */2 in @), we
obtain for v € R

) = =l = ot~ )2~ [

<6—u2(572y—1)/2 1= u2y]l\y|§1) Vf(dy) (62)
R

For given u € R denote

fuly) = e @02 1yl 0, y e R\ {0}
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We shall first investigate the limit behavior of (6.2) as u — oo when divided by appropriate
powers of u and from that obtain information about the characteristic triplet of £. To do
so, observe first that there are constants C, Cs, C3 > 0 such that

e —14+x—2%/2] < Ci2* VYa>0,
e —1+2y < Cyw’ Vye[-1,1], and
(e -1 < Csy* Vye[-1,1].

Let yo € [=1,0). Then |f.(y)] < 1+ u? for y < 3o, and for y € [yo,0) we can estimate

| fu(y)] |—u(e™ —1)/2+ut (e — 1)?/8 —u?y| + Cru'(e™ — 1)/4

<
< u202y2/2 + u403y2/8 + 0103U4’y2/4.

Using dominated convergence, this gives

0
lim sup v / u ()| ve(dy) < (Ca/8 + C1C3/4) /[ rela),
—00 0,0

U—00

and letting yo T 0 we see that

U—00

0
i [ 14u(0)|ldy) =0 (6.3
Now let y > 0. Then

fay) = (W1 =) /2 = uy) Lo (y) = —u*(C2/2)y* L0, (y).-

Since also lim, o u™° f,(y) = 400 for y > 0 and lim,, f(o . u 3y ve(dy) = 0, we obtain
from Fatou’s lemma

lim inf v ~° : Ju(y) V&(dy)

U— 00 (0700

U—00

= lim inf/ u? (fu<y) + u2(02/2)y2]1(0,1] (y)) ve(dy)
(0,00)

U— 00

> / lim inf (u_5fu(y) + u_3(02/2)y2]1(0,1] (y)) ve(dy)
(0,00)
- /(0 )ooyg(dy) = 00 1%((0, 00)).

Dividing (6.2) by u® and observing that limy_,o u™¢,(u) = —07/2 < oo (cf. [36, Lem.
43.11]) and hence lim, o u "¢, (u) = 0, this together with (G.3)) gives v¢((0,00)) = 0.
Similarly, dividing (6.2) by u*, we obtain ¢ = 0 by (6.3).

It remains to show that v¢((—o00,0)) = 0. In doing so, we shall first establish that £ must
be of finite variation. Recall that

e —14+z > 0 Vx>0 and
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e’ =14z > z/2 Vz>4
Let y < 0. Then f,(y) > —1 for y < —1, and for y € [—1,0) we estimate

fuly) = eEIIIR L2 (e 1) 2 - (e - 1)/2 - uy
> (e — 1) /412201y 250y — Cou’y?/2.

An application of Fatou’s lemma then shows

lim inf u 2 /(_0070) Juy) ve(dy) > —C4/2 /[_170) y? ve(dy) +/ (e —1)/4 ve(dy).

U—00 [_ 170)

But since limy, o0 u 2|0, (u)| < oo, dividing (6.2)) by u* and letting u — oo gives f[_l’o) (e —
1) ve(dy) < oo, hence f[fl 0) ly| ve(dy) < oo, so that £ is of finite variation. Equation (6.2))
can now be rewritten as

w4 [ (R 1 vy = o (6.4)
(70070)

where fyg is the drift of £. Since § — oo as t — oo and £ is spectrally negative, we must
have 72 > 0.

Let p denote the standard normal distribution and define the mapping T by
T:Rx(=00,0) >R, (2,y)— Ve —1

Then for any € > 0,

/ (6_u2(e*2y—1)/2 — 1) l/g(dy)
(—o00,—¢]
_ / / (eiuxm - 1) p(dz) ve|(~oo, <) (dy)
R JR
_ /R(ezuz . 1) T(p X I/§|(foo,f€])(d2).

With

Bo(0) = () + / (€ — 1) T(0® ve(—oor—e)(d)

it, follows from (6.4) that lim. o ¢_(u) = —y2u®. But since ¢, is the Lévy-Khintchine expo-
nent of an infinitely divisible distribution with Lévy measure v, +T'(p ® ve|(—o0,—¢]), since
T(p®@Ve|(—00,—e]) i increasing as € | 0, and since v — —vqu is the Lévy-Khintchine expo-
nent of a Gaussian random variable, it follows from [36, Thm. 8.7] that T'(p®ve|(—oo,—¢]) =
0 for any € > 0, hence v¢((—00,0)) = 0.

We have shown that & = 'ygt. Injectivity of the mapping ®, (cf. Theorem [5.3) together
with the sufficiency part show that necessarily 7, = (275)1/ 29W,, completing the proof. [
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7 Continuity

Another natural question about the mappings ®, and (i)n as defined in Section[Blis, whether

they are continuous. Hereby we say, that ®, is continuous, if for each sequence of Lévy

processes (7™),en such that 775") 4 17 as n — oo and E(n%n)) € D¢, L(m) € D, the

sequence ¢§(£(n§"))) converges weakly to ®¢(L(n;)) as n — oo, denoted as <I>§(£(n§n))) =

O (L(m1)) in the following. Continuity of @, is defined similarly.

In general ®, is not continuous as proven by the following counterexample. We expect
that failure of continuity of ®¢,—, is known as it is a very well studied mapping, but since
we were unable to find a ready reference we give a short proof.

Example 7.1. Let (§ = t);>0 be deterministic. Then ®¢ is not continuous.

Proof. In the given setting we have that D¢ is I Do, the set of infinitely divisible distri-
butions with finite log™-moment. Now let (Yi("))ieN be sequences of i.i.d. random variables

such that
1. /1 1 1 /1 1
p= L) = (1= ) (G0t 0 ) 4 | S0+ 50
and define the sequence (Yi(o))ieN of i.i.d. random variables with
1 1
V(O) = L(le(o)> = <§51 + 551) .

Then obviously We have Y( n 4 Y( ) as n — o00. Now for all n € Ny define the compound

P01sson process Th ENt Y;( where N is a Poisson process with rate 1, independent

of (Y; )ieN. Then pf ") = E( m ) € D¢ for all n € Ny and in particular for n > 1 and
z € R we have that

W) = e ([ =)y ) = e -

" exp0(z) - 1) = nO)(2)

such that u™ — p© asn — co. But ¢¢(u™) does not converge to ¢¢(u®) as will be
shown in the following. Herefore observe that by [36, Eq. (17.14)] the Lévy measure 7™
of ¢¢(u'™) fulfills for all n > 0

(100) = [ [ toofe nds ) = [ dogyu®(ay)
R JO (0,00)
such that for all n > 1
1
7™ ([1,00)) = élogn — 00 as n — 0o,

whereas 7(¥([1,00)) = 0. Using [36, Thm. 8.7] this shows that ®¢(u™) A ®(u) as
n — 0o, so that ®, is not continuous. O
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Continuity of stationary solutions of random recurrence equations has been studied by
Brandt [§]. The following is a special case of his result for i.i.d. sequences, but does not
assume that E[log|Bé")|], E[|log Byl|] are finite and that E[log|B(()n)|] — E[|log|Byl] as
n — 0o. That these conditions can be omitted follows readily by an inspection of Brandt’s
proof [, Thm. 2].

Proposition 7.2. Let the sequences (A;, B;)ien, (Agl),Bgl))ieNO (Agz),Bgz))ieNO, ... obe
i.i.d. such that Ellog" |Aé")|] < 00, Ellog® |Bén)|] < oo for all n, Ellog" |A|] < oo and
Ellog" |By|] < 0o. Assume further that

—o00 < Ellog |A(()n)|] <0 for alln, — o0 < Ellog|Ap]] <0

and that for n — oo

(A5, B) % (Ao, Bo),

[log+|A">|J —  Ellog" | Ao,

Ellog" |BJ"|] — Ellog" |By|]
and Elog|A{”|] —  E[log |A|].

Let Y. be the umque stationary marginal distribution of the random recurrence equation
Yl(fl = A(n n) + B( , 1 € Ny, and define Y, analoguously. Then

(A B™ Y)Y 4 (Ag, By, Yao) as m— 0o

(n)

such that in particular Y A Yo asn — oo.

Due to the fact that generalized Ornstein-Uhlenbeck processes are the continuous-time
analogon of the solutions to random recurrence equations with i.i.d. coefficients, we can
use the above proposition in our setting to obtain the following.

Theorem 7.3. Let (€™, 7™), n € N, and (£,n) be bivariate Lévy processes such that

(gln)7771 ) i> (517771)’ n — Q.

Suppose there exists § > 0 such that

sup/ (log™® |x|)1+‘51/n(n)(dx) < 00 (7.1)
neN JR\[-1,1]
and suIN)E[|§§")|1+5] < 00. (7.2)
ne

Then Elog™ |n| < oo and E|&;| < oo. Assume further that
E& >0 and EE™ >0, neN. (7.3)

Then fooo o6 dngn) converges almost surely absolutely for eachn € N, as does fooo e~%= dn,,

and - -
/ et dn™ A / e s dn,, n — oo, (7.4)
0 0
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For the proof of Theorem [7.3] we need the following Lemma, which is of its own interest.

Lemma 7.4. Let L = (Ly)i>o be a Lévy process in R with characteristic triplet (g, 0%, V).
Let b > 0. Then there exist universal constants Cy,Cy, C3 € (0,00), depending only on b,
such that for every adapted cadlag process H satisfying

b
E (logjL sup |HS|) < 00
the following estimate holds:

0<s<1
/HdL)

< <1+0i+/ 2? v (dr) + log™ |z +exp{02/
|z|<1 |

z|>1

(log sup

0<s<1

(log”" [z’ vL<das>})
b
+Cs E (logJr Os<u;<)1 |HS|) : (7.5)

Proof. Write L, = Lf 4+ L?, where L* = (L!);>( has characteristic triplet

(7%:::07<0%>2:::J%7V%:::VLH*LH>

and L’ = (L?)s>o has characteristic triplet

(0%, =72 (01)" = 0,0 = vy g 1)

Then L* has expectation zero (e.g. [36, Ex. 25.12]) and is a square integrable martingale,
and L’ is a compound Poisson process together with drift 7;. Observe that for proving
(73) it is obviously sufficient to prove it for Lf and L’ separately, which we shall do.

For the estimate for L*, let > 0. Then

S b
P ((1og+ sup / H,_ dLg) > :1:)
0<s<1 |Jo

= P(sup / H,_dL} >exp(:c1/b))
0

0<s<1

<P ( sup / H,- dLi‘ > exp(a'?), sup |H,| < exp(xl/b/%)
0<s<1 0<s<1
+P < sup |Hg| > exp(xl/b/2)> : (7.6)
0<s<1

Denote H") := H, A exp(x'/*/2). Then on {supg< <y | Hs| < exp(2'/?/2)}, [ Ho— dLf =

fos Hq(f_) dLf for all 0 < s < 1, so that by Markov’s inequality and Doob’s maximal
quadratic inequality, we obtain

P(sup
0<s<1

/ H, sz] > exp(@™®), sup |H| < exp(a*’’/ 2))

0<s<1
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IN

(sup /H
0<s<1

exp(— 2x1/b E sup
0<s<1

Joen)

/HdLjj
/HL

= 4exp(—2x1/b)/ E|H™? dL} Var(L})
0
< dexp(—22") exp(x'/?) Var(L})

— dexp(—a') (02 + / ¥ v (dy)),

ly|<1

IN

IN

4exp(—22'") E

where we used [36, Ex. 25.12] to express the variance Var(L?) in terms of the characteristic
triplet. Combining this with (7.0, we obtain

/ H,- dLﬁ)
00 0 b
< 4 (ai—i—/ y° VL(dy))/ exp(—z'/?) d;z:—l—/ P (<logJr sup |Hs\) >:1:2b> dx
ly|<1 0 0 O=s=l1

00 b
= 4 (ai—i—/ y° VL(dy))/ exp(—z/*)dz + 20 F <logJr sup \HA) :
ly|<1 0 0<s<1

establishing (7.5)) for L*.
In order to obtain (735) for L’, denote

=yl + ) ALY,

0<s<t

<log sup

0<s<1

Then R = (R;):>o is a subordinator and

S b
/ H,_dL’ )
0
b
< <logJr (R1 Os<u£)1 \Hs\>)

b
< (log+ Ry +log™ sup IHSI)

0<s<1

(logJr sup

0<s<1

b
< (2'v1)(logt Ry + (2P v 1) (log‘L sup \Hs\) : (7.7)

0<s<1

Since the function x — (log(x V €)) is submultiplicative (cf. Sato [36, Prop. 25.4]), it
follows from the proof of Theorem 25.3 in Sato [36] that there is a constant Cy = Cy(b),
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depending only on b, such that

E (log (e\/ > ALZ))b Sexp{CQ /x>1(log+\x|)b1/L(da:)}.

0<s<1
Hence, there is a constant Cy = Cy(b) € (0, 00) such that
E(log" R,)’
1+ E(log(e V Ry))"

i (1+ (g Pl + exp { [ o ol vafan)} )

<
<

Together with (Z.7) this gives (Z.5) for L’. O
Proof of Theorem[7.3. Recall that for any real numbers a and b and § > 0 it holds
|a + b|1+5 < C5<|a‘1+5 + ‘b|1+5)

for some constant Cjs. Using this together with Doob’s martingale inequality (c.f. [36, Eq.
(25.16)]) and Jensen’s inequality we obtain

E[ sup [¢(]"*]

0<s<1

IN

C <E[ sup [¢) — sEle™])"] + |E[£§"’H”5)

0<s<1
s (SEI — BEIM) + B )

<
< SCZE[E M) + (8C2 + Cy)| B[]+
< (16C2 + Cy)E[Je™|+9).

Hence from ([7.2]) we conclude

sup E[( sup [£™])] < oo (7.8)
neN 0<s<1

and therefore also
sup E[( sup [£M v 0[)1*9] < oo. (7.9)
neN 0<s<1
Denote by (7,m, 0727(”), V) and (7, ag, v,) the characteristic triplets of n™ and 7, respec-
tively. Denote by h the continuous truncation function h(z) = 21 ;<1+(2—|z|)sgn(z) 1izcq,2-

Set
h(z
Bn(") = Ty +/ z (% - 1|J1|§1) Vy(n) (dx),
]

[7272]

(h(z) = 21j5)<1) Vyon (dT) = Yy ) +/

[—2,2

i.e. the constant term in the Lévy-Khintchine triplet of ™ with respect to the truncation

function h (c.f. [36, Egs. (8.5), (8.6)]). Define /3, similarly. Since " % 1, it follows from
[15, Thm. VIL.2.9, p.396] that 8, — By,

02 + / v (d) + / (2 — [2])? vy (do)
|z|<1

1<|z|<2
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= o$+/x§x2y,,(dx)+/ (2 — |2])2 vy (dz)

1<|z|<2

and [p f(z) veo (dx) — [ f(x) ve(dx) as n — oo for every continuous bounded function
f vanishing in a neighbourhood of zero. In particular,

sup 02, < 00, sup/ 2 vy (dz) < oo and  sup |y,m| < co. (7.10)
neN K neN J[-1,1] neN
Applying Lemma [[4] with b = 1 + 6 and Hy, = 1 and using (1)) then shows that

sup,cy E(logt ™)1+ < 0o, and hence that E(log™ |m[)** < oo by Fatou’s lemma for
weak convergence (cf. Kallenberg [I7, Lem. 4.11]), and similarly we obtain E|& | < oo

from (7.8).
Since E'log™ 11| < oo, E& > 0, Elog™ |771")| < oo and Eff") > 0, the integrals fooo e~%= dn,
and [;° et dngn) converge almost surely absolutely (cf. [12, Thm. 2]). Writing

[e'¢) 1 00
/ 6 dgnt = / 6 g 4 8" / e~ (€=M () — iy,
0 0 1

we have

0 k=0

0 00 k—1
/ 6—52_) dngn) 4 Z (H AEn)) B]E;n)

with some i.i.d. sequences (A" B™), oy, such that

1
AP B (e, [ e ant),
0

and a similar statement holds for fooo e~ dn, with (Ag, Br)ren, i.i.d. such that (Ag, By) =
(6751’ fol 6763— dns)

Now, to apply Proposition [7.2] we have to check its conditions on the sequences (A(()"))neN
and (Bén))neN which we shall do in the following,.

Since (£, p\™) A (&1,m), n — oo, it follows from [I5, Cor. VIL.3.6, p. 415] that
(€M) (™) A (&,m), where «5» denotes convergence in the Skorokhod topology. Addi-
tionally, the sequences (£™),n € N, and (™), n € N, satisfy the P-UT condition (cf. [15),
Def. VL.6.1, p. 377]). To see this, let h : R> — R? be a continuous bounded function satis-
fying h(x) = x in a neighbourhood of 0. Then if (v, A, v);, is the Lévy-Khintchine triplet
of (&,n) with respect to h (we use the notations here as in [15, Eq. I1.4.21, p. 107]), then
(nt, At,dt v(dx)), t > 0, is the semimartingale characteristic of (£, n) with respect to h, cf.

[15], Cor. I1.4.19, p. 107]. A similar statement holds for (€™ (). Since (£, ™) 5 (&,m)
as n — 00, the sequence (€™, ™), n € N, is tight. Furthermore, since again by [15, Cor.
VIL.3.6, p. 415], 7,(Ln) — v, as n — 00, and since the total variation of s — %(Ln)s on [0,¢]

is \fy,(L")\t, condition (iii) of [15, Thm. VI.6.15, p. 380] is satisfied, and it follows from [15]
Thm. VL.6.21, p. 382] that (£ n() n € N, is P-UT. Then also (™), ey is P-UT (cf.
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[15, Eq. VL.6.3, p. 377)).
From [15, Thm. VI.6.22, p. 383] it now follows that

n n ) n)y £ o o
GRR7 ),/ et dnim) 5 (f,n,/ e~ dn,), n— oo, (7.11)
0 0

in the Skorokhod topology. Since none of the components has a discontinuity at fixed
t > 0 with positive probability, this implies

(AS B) S (A, By), n — 0. (7.12)
By assumption we have log |4V = —¢™ Lo = log | Apl|. Since additionally the

sequence (log |A”|)pen is uniformly integrable by (72) (see e.g. [7, Condition (3.18)]),
this yields by [7, Thm. 3.5]

Ellog| A ]] = Ellog |Ao]], n — . (7.13)
Since (79) implies sup, E[|log™ |A{”||'+%] < co we obtain similarly
E[logt |Al"]] = Eflog* |Ao|], n — oo. (7.14)
Also, it is obvious that (Z3) and (2]) yield
— 00 < Eflog|Ag]] <0 and — oo < Eflog|AL”]] < 0. (7.15)
Finally, observe that ((Z.9) implies
sup Elog" sup |6_§£n) ' < 00

neN 0<s<1

which, together with (7)) and (Z.I0), yields by Lemma [7.4]

sup Eflog™ | B{|]'*? < .
neN

Again, this gives Eflog™ | By|]'*? < oo and
E[log* |B{"[] = Ellog* |Bol] < 00, n — o0. (7.16)

Now, by Proposition [7.2] we obtain the stated result from (.12), (C.13), (C.14), (Z.15) and
(C1G). O

From the above theorem we immediately obtain the following corollary on injectivity of
P, and ®,. Observe that the conditions in part (¢) have been violated in Example [Tl

Corollary 7.5. (i) Let (&)e0 be a Lévy process such that E[&;] > 0 and E[|& '] < oo

)

for some 6 > 0. Let (n™),ex be a sequence of Lévy processes such that 77%" BN M as

n — oo, L(n\™) € D¢, L(n1) € D¢ and
sup/ (log™ |z])" v (dz) < oco.
neN J|z|>1

Then <I>§(£(n§"))) = ®¢(L(m1)) as n — 0.
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(ii) Let (n:)eso be a Lévy process such that Ellogh |m|'™°] < oo for some § > 0. Let

(€™),en be a sequence of Lévy processes such that fln) 4 &1 asn — 00, E(é")) €
Dy, L(&1) € Dy, EE") > 0, El&1] > 0 and

sup B[] '] < oo,
neN

Then &, (L(EM)) 5 &, (L(&)) asn — .
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