Skip to main content
Log in

Recent Advances in Iron Oxide Nanoparticles (IONPs): Synthesis and Surface Modification for Biomedical Applications

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In recent years, extensive researches were devoted to iron oxide nanoparticles (IONPs), including magnetite (Fe3O4) and maghemite (γ-Fe2O3), due to their low toxicity and cost, in addition to their unique physicochemical and magnetic properties. In this review, we present a brief introduction on IONPs in terms of classification and properties. Because the synthesis approach and surface modification are found to be key factors for better control of particle morphology and shape, as well as to produce monodispersed IONPs, which have direct influence on their properties and applications, particular emphasis will be given to the chemical synthesis methods and surface modifications by several organic materials such as polyvinylpyrrolidone (PVP), chitosan, and cetyltrimethylammonium bromide (CTAB). Recent trends and future prospects in this research field are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, Z., Chen, H., Bao, H., Gao, M.: One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem. Mater. 16(8), 1391–1393 (2004)

    Google Scholar 

  2. Liu, J., Zhang, Y., Chen, D., Yang, T., Chen, Z., Pan, S., Gu, N.: Facile synthesis of high-magnetization γ-Fe2O3/alginate/silica microspheres for isolation of plasma DNA. Colloids Surf. A Physicochem. Eng. Asp. 341(1), 33–39 (2009)

    Google Scholar 

  3. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26(18), 3995–4021 (2005)

    Google Scholar 

  4. Qu, J., Liu, G., Wang, Y., Hong, R.: Preparation of Fe3O4-chitosan nanoparticles used for hyperthermia. Adv. Powder Technol. 21(4), 461–467 (2010)

    Google Scholar 

  5. Kandasamy, G., Maity, D.: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496(2), 191–218 (2015)

    Google Scholar 

  6. Mørup, S., Hansen, M.F., Frandsen, C.: Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182 (2010)

    Google Scholar 

  7. Liang, S., Wang, Y., Yu, J., Zhang, C., Xia, J., Yin, D.: Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy. J. Mater. Sci. Mater. Med. 18(12), 2297–2302 (2007)

    Google Scholar 

  8. Abuelsamen, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Farhat, O.: Effects of precursor concentrations on the optical and morphological properties of ZnO nanorods on glass substrate for UV photodetector. Superlattice. Microst. 111, 536–545 (2017)

    ADS  Google Scholar 

  9. Arami, H., Stephen, Z., Veiseh, O., Zhang, M.: Chitosan-coated iron oxide nanoparticles for molecular imaging and drug delivery. In: Chitosan for Biomaterials I, pp. 163–184. Springer (2011)

  10. Kim, D.K., Mikhaylova, M., Wang, F.H., Kehr, J., Bjelke, B., Zhang, Y., Tsakalakos, T., Muhammed, M.: Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater. 15(23), 4343–4351 (2003)

    Google Scholar 

  11. Sodipo, B.K., Aziz, A.A., Mustapa, M.: Facile synthesis and characteristics of gold coated superparamagnetic iron oxide nanoparticles via sonication. Int. J. Nanoelectron. Mater. 8, 1–6 (2015)

    Google Scholar 

  12. Sodipo, B.K., Aziz, A.A.: A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl) triethoxysilane. Beilstein J. Nanotechnol. 5, 1472 (2014)

    Google Scholar 

  13. Ahmadi, P., Alamolhoda, S., Mirkazemi, S.: Cetyltrimethylammonium bromide (CTAB) surfactant-assisted synthesis of BiFeO 3 nanoparticles by sol-gel auto-combustion method. J. Supercond. Nov. Magn. 1–8 (2018)

  14. Gungunes, C., Alpsoy, L., Baykal, A., Nawaz, M., Akal, Z.: The effect of folic acid- and caffeic acid-functionalized SPION on different cancer cell lines. J. Supercond. Nov. Magn. 1–10 (2018)

  15. Cornell, R.M., Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrences and uses. Wiley (2003)

  16. Cudennec, Y., Lecerf, A.: Topotactic transformations of goethite and lepidocrocite into hematite and maghemite. Solid State Sci. 7(5), 520–529 (2005)

    ADS  Google Scholar 

  17. Ricci, P.C., Carbonaro, C.M., Corpino, R., Chiriu, D., Stagi, L.: Surface effects and phase stability in metal oxides nanoparticles under visible irradiation. In: AIP Conference Proceedings 2014, vol. 1, pp. 104–110. AIP

  18. Wu, C., Yin, P., Zhu, X., OuYang, C., Xie, Y.: Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B. 110(36), 17806–17812 (2006)

    Google Scholar 

  19. Shokouhimehr, M., Piao, Y., Kim, J., Jang, Y., Hyeon, T.: A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew. Chem. Int. Ed. 46(37), 7039–7043 (2007)

    Google Scholar 

  20. Pomies, M.-P., Morin, G., Vignaud, C.: XRD study of the goethite-hematite transformation: application to the identification of heated prehistoric pigments. Eur. J. Solid State Inorg. Chem. 35(1), 9–25 (1998)

    Google Scholar 

  21. Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatraman, S.S., Zhi-Chuan, X.: Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications. Chin Phys B. 23(3), 037503 (2014)

    ADS  Google Scholar 

  22. Conell, R., Schertmann, U.: The iron oxides: structure, properties, reactions, occurrence and uses. VCH, Weinheim (1996)

  23. Ju, S., Cai, T.-Y., Lu, H.-S., Gong, C.-D.: Pressure-induced crystal structure and spin-state transitions in magnetite (Fe3O4). J. Am. Chem. Soc. 134(33), 13780–13786 (2012)

    Google Scholar 

  24. Wu, W., Wu, Z., Yu, T., Jiang, C., Kim, W.-S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16(2), 023501 (2015)

    Google Scholar 

  25. Mantovan, R., Lamperti, A., Georgieva, M., Tallarida, G., Fanciulli, M.: CVD synthesis of polycrystalline magnetite thin films: structural, magnetic and magnetotransport properties. J. Phys. D. Appl. Phys. 43(6), 065002 (2010)

    ADS  Google Scholar 

  26. Spiers, K., Cashion, J.: Crystallographically-based analysis of the NMR spectra of maghemite. J. Magn. Magn. Mater. 324(5), 862–868 (2012)

    ADS  Google Scholar 

  27. Sung, H.W., Rudowicz, C.: A closer look at the hysteresis loop for ferromagnets—a survey of misconceptions and misinterpretations in textbooks. arXiv Preprint Cond-Mat/0210657 (2002)

  28. Pang, Y.L., Lim, S., Ong, H.C., Chong, W.T.: Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram. Int. 42(1), 9–34 (2016)

    Google Scholar 

  29. Sels, B., Van de Voorde, M.: Nanotechnology in catalysis: applications in the chemical industry, energy development, and environment protection. John Wiley & Sons (2017)

  30. Ramimoghadam, D., Bagheri, S., Hamid, S.B.A.: Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 368, 207–229 (2014)

    ADS  Google Scholar 

  31. Kodama, R.: Magnetic nanoparticles. J. Magn. Magn. Mater. 200(1), 359–372 (1999)

    ADS  Google Scholar 

  32. Amara, D., Grinblat, J., Margel, S.: Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J. Mater. Chem. 22(5), 2188–2195 (2012)

    Google Scholar 

  33. Li, Y., Jiang, R., Liu, T., Lv, H., Zhang, X.: Single-microemulsion-based solvothermal synthesis of magnetite microflowers. Ceram. Int. 40(3), 4791–4795 (2014)

    Google Scholar 

  34. Lemine, O., Omri, K., Zhang, B., El Mir, L., Sajieddine, M., Alyamani, A., Bououdina, M.: Sol–gel synthesis of 8nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattice. Microst. 52(4), 793–799 (2012)

    ADS  Google Scholar 

  35. Kim, D., Zhang, Y., Voit, W., Rao, K., Muhammed, M.: Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225(1), 30–36 (2001)

    ADS  Google Scholar 

  36. Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., Gu, Z.: Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 3(8), 595 (2013)

    Google Scholar 

  37. Maity, D., Choo, S.-G., Yi, J., Ding, J., Xue, J.M.: Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater. 321(9), 1256–1259 (2009)

    ADS  Google Scholar 

  38. Abbas, M., Rao, B.P., Naga, S., Takahashi, M., Kim, C.: Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction—surfactantless polyol process. Ceram. Int. 39(7), 7605–7611 (2013)

    Google Scholar 

  39. Maity, D., Ding, J., Xue, J.-M.: Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct. Mater. Lett. 1(03), 189–193 (2008)

    Google Scholar 

  40. Hufschmid, R., Arami, H., Ferguson, R.M., Gonzales, M., Teeman, E., Brush, L.N., Browning, N.D., Krishnan, K.M.: Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 7(25), 11142–11154 (2015)

    ADS  Google Scholar 

  41. Tian, Y., Yu, B., Li, X., Li, K.: Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J. Mater. Chem. 21(8), 2476–2481 (2011)

    Google Scholar 

  42. Demortiere, A., Panissod, P., Pichon, B., Pourroy, G., Guillon, D., Donnio, B., Begin-Colin, S.: Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. 3(1), 225–232 (2011)

    ADS  Google Scholar 

  43. Ruusunen, J., Ihalainen, M., Koponen, T., Torvela, T., Tenho, M., Salonen, J., Sippula, O., Joutsensaari, J., Jokiniemi, J., Lähde, A.: Controlled oxidation of iron nanoparticles in chemical vapour synthesis. J. Nanopart. Res. 16(2), 2270 (2014)

    ADS  Google Scholar 

  44. Dai, L., Liu, Y., Wang, Z., Guo, F., Shi, D., Zhang, B.: One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement. Mater. Sci. Eng. C. 41, 161–167 (2014)

    Google Scholar 

  45. Patsula, V., Kosinová, L., Lovrić, M., Ferhatovic Hamzić, L., Rabyk, M., Konefal, R., Paruzel, A., Šlouf, M., Herynek, V., Gajović, S.K.: Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron (III) glucuronate and application in magnetic resonance imaging. ACS Appl. Mater. Interfaces. 8(11), 7238–7247 (2016)

    Google Scholar 

  46. Orsini, N.J., Babić-Stojić, B., Spasojević, V., Calatayud, M., Cvjetićanin, N., Goya, G.: Magnetic and power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of Fe (acac) 3. J. Magn. Magn. Mater. 449, 286–296 (2018)

    ADS  Google Scholar 

  47. Holmberg, K., Jönsson, B., Kronberg, B., Lindman, B.: Surfactants and polymers in aqueous solution. Wiley Online Library, (2002)

  48. Sanchez-Dominguez, M., Pemartin, K., Boutonnet, M.: Preparation of inorganic nanoparticles in oil-in-water microemulsions: a soft and versatile approach. Curr. Opin. Colloid Interface Sci. 17(5), 297–305 (2012)

    Google Scholar 

  49. López-Quintela, M., Rivas, J., Blanco, M., Tojo, C.: Synthesis of nanoparticles in microemulsions. In: Nanoscale Materials, pp. 135–155. Springer (2004)

  50. Vidal-Vidal, J., Rivas, J., López-Quintela, M.: Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf. A Physicochem. Eng. Asp. 288(1), 44–51 (2006)

    Google Scholar 

  51. Chin, A.B., Yaacob, I.I.: Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J. Mater. Process. Technol. 191(1), 235–237 (2007)

    Google Scholar 

  52. Hu, Z., Nourafkan, E., Gao, H., Wen, D.: Microemulsions stabilized by in-situ synthesized nanoparticles for enhanced oil recovery. Fuel. 210, 272–281 (2017)

    Google Scholar 

  53. NuLi, Y., Zhang, P., Guo, Z., Munroe, P., Liu, H.: Preparation of α-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries. Electrochim. Acta. 53(12), 4213–4218 (2008)

    Google Scholar 

  54. Wu, W., He, Q., Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3(11), 397 (2008)

    ADS  Google Scholar 

  55. Rezaei, N., Ehsani, M., Aghazadeh, M., Karimzadeh, I.: An investigation on magnetic-interacting Fe3O4 nanoparticles prepared by electrochemical synthesis method. J. Supercond. Nov. Magn. 31(7), 2139–2147 (2018)

    Google Scholar 

  56. Mortimer, R.J.: Electrochromic materials. Chem. Soc. Rev. 26(3), 147–156 (1997)

    Google Scholar 

  57. Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Nazar, L., Ellis, B., Kovacheva, D.: Review on electrode–electrolyte solution interactions, related to cathode materials for li-ion batteries. J. Power Sources. 165(2), 491–499 (2007)

    ADS  Google Scholar 

  58. Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R.P., Capiglia, C.: Review on recent progress of nanostructured anode materials for li-ion batteries. J. Power Sources. 257, 421–443 (2014)

    ADS  Google Scholar 

  59. Rodríguez-López, A., Paredes-Arroyo, A., Mojica-Gomez, J., Estrada-Arteaga, C., Cruz-Rivera, J., Alfaro, C.E., Antaño-López, R.: Electrochemical synthesis of magnetite and maghemite nanoparticles using dissymmetric potential pulses. J. Nanopart. Res. 14(8), 993 (2012)

    ADS  Google Scholar 

  60. Starowicz, M., Starowicz, P., Żukrowski, J., Przewoźnik, J., Lemański, A., Kapusta, C., Banaś, J.: Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J. Nanopart. Res. 13(12), 7167–7176 (2011)

    ADS  Google Scholar 

  61. Karimzadeh, I., Aghazadeh, M., Doroudi, T., Ganjali, M.R., Kolivand, P.H.: Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: a facile and scalable preparation route based on the cathodic electrochemical deposition method. Adv. Phys. Chem. 2017, (2017)

  62. Lu, J., Jiao, X., Chen, D., Li, W.: Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates. J. Phys. Chem. C. 113(10), 4012–4017 (2009)

    Google Scholar 

  63. Hong, Y., Shi, H., Shu, X., Zhang, Y., Wu, Y.: Tunable synthesis of hierarchical superparamagnetic Fe3O4 nanospheres by a surfactant-free solvothermal method. J. Supercond. Nov. Magn. 1–9 (2018)

  64. Veriansyah, B., Kim, J.-D., Min, B.K., Kim, J.: Continuous synthesis of magnetite nanoparticles in supercritical methanol. Mater. Lett. 64(20), 2197–2200 (2010)

    Google Scholar 

  65. Liu, X.-M., Kim, J.-K.: Solvothermal synthesis and magnetic properties of magnetite nanoplatelets. Mater. Lett. 63(3), 428–430 (2009)

    Google Scholar 

  66. Zhang, X., Quan, Z., Yang, J., Yang, P., Lian, H., Lin, J.: Solvothermal synthesis of well-dispersed NaMgF3 nanocrystals and their optical properties. J. Colloid Interface Sci. 329(1), 103–106 (2009)

    ADS  Google Scholar 

  67. Liang, J., Ma, H., Luo, W., Wang, S.: Synthesis of magnetite submicrospheres with tunable size and superparamagnetism by a facile polyol process. Mater. Chem. Phys. 139(2), 383–388 (2013)

    Google Scholar 

  68. Wang, R., Xu, C., Du, M., Sun, J., Gao, L., Zhang, P., Yao, H., Lin, C.: Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high li-storage and excellent stability. Small. 10(11), 2260–2269 (2014)

    Google Scholar 

  69. An, J.S., Han, W.J., Choi, H.J.: Synthesis of hollow magnetite nanoparticles via self-assembly and their magnetorheological properties. Colloids Surf. A Physicochem. Eng. Asp. 535, 16–23 (2017)

    Google Scholar 

  70. Farokhzad, O.C., Langer, R.: Impact of nanotechnology on drug delivery. ACS Nano. 3(1), 16–20 (2009)

    Google Scholar 

  71. Corriu, R.J., Leclercq, D.: Recent developments of molecular chemistry for sol–gel processes. Angew. Chem. Int. Ed. 35(13–14), 1420–1436 (1996)

    Google Scholar 

  72. Niederberger, M.: Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40(9), 793–800 (2007)

    Google Scholar 

  73. Kessler, V.G., Spijksma, G.I., Seisenbaeva, G.A., Håkansson, S., Blank, D.H., Bouwmeester, H.J.: New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursors: a possibility to approach new classes of materials. J. Sol-Gel Sci. Technol. 40(2–3), 163–179 (2006)

    Google Scholar 

  74. Cui, H., Liu, Y., Ren, W.: Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol. 24(1), 93–97 (2013)

    Google Scholar 

  75. Lu, Y., Yin, Y., Mayers, B.T., Xia, Y.: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Lett. 2(3), 183–186 (2002)

    ADS  Google Scholar 

  76. Lakshmi, B.B., Patrissi, C.J., Martin, C.R.: Sol−gel template synthesis of semiconductor oxide micro-and nanostructures. Chem. Mater. 9(11), 2544–2550 (1997)

    Google Scholar 

  77. Le, H.-L.T., Lazzari, R., Goniakowski, J., Cavallotti, R., Chenot, S., Noguera, C., Jupille, J., Koltsov, A., Mataigne, J.-M.: Tuning adhesion at metal/oxide interfaces by surface hydroxylation. J. Phys. Chem. C. (2017)

  78. McCarthy, J.R., Weissleder, R.: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60(11), 1241–1251 (2008)

    Google Scholar 

  79. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008)

    Google Scholar 

  80. Mahmoudi, M., Simchi, A., Imani, M.: Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical applications. J. Iran. Chem. Soc. 7(2), S1–S27 (2010)

    Google Scholar 

  81. Dong, W., Zhu, C.: Use of ethylene oxide in the sol–gel synthesis of α-Fe2O3 nanoparticles from Fe (iii) salts. J. Mater. Chem. 12(6), 1676–1683 (2002)

    Google Scholar 

  82. Qi, H., Yan, B., Lu, W.: A facile synthetic pathway of monodisperse Fe3O4 nanocrystals. J. Sol-Gel Sci. Technol. 69(1), 67–71 (2014)

    Google Scholar 

  83. Silva, M.F., de Oliveira, L.A., Ciciliati, M.A., Lima, M.K., Ivashita, F.F., Fernandes de Oliveira, D.M., Hechenleitner, A.A.W., Pineda, E.A.: The effects and role of polyvinylpyrrolidone on the size and phase composition of Iron oxide nanoparticles prepared by a modified sol-gel method. J. Nanomater. 2017, (2017)

  84. Sodipo, B.K., Aziz, A.A.: Non-seeded synthesis and characterization of superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles via ultrasound. Ultrason. Sonochem. 23, 354–359 (2015)

    Google Scholar 

  85. Kayode, S.B., Aziz, A.A.: An in-situ functionalization of decanethiol monolayer on thin silica coated superparamagnetic iron oxide nanoparticles synthesized by non-seeded process. In: Advanced Materials Research 2014, pp. 300–303. Trans Tech Publ

  86. Sodipo, B.K., Azlan, A.A.: Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: role of colloidal stability. In: AIP Conference Proceedings 2015, vol. 1, p. 100002. AIP Publishing

  87. Suslick, K.S.: The chemistry of ultrasound. Encyclopaedia Britannica. Chicago. 138–155 (1994)

  88. Xu, H., Zeiger, B.W., Suslick, K.S.: Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42(7), 2555–2567 (2013)

    Google Scholar 

  89. Sodipo, B.K., Aziz, A.A.: One minute synthesis of amino-silane functionalized superparamagnetic iron oxide nanoparticles by sonochemical method. Ultrason. Sonochem. 40, 837–840 (2018)

    Google Scholar 

  90. Hassanjani-Roshan, A., Vaezi, M.R., Shokuhfar, A., Rajabali, Z.: Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology. 9(1), 95–99 (2011)

    Google Scholar 

  91. Mo, Z., Zhang, C., Guo, R., Meng, S., Zhang, J.: Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation. Ind. Eng. Chem. Res. 50(6), 3534–3539 (2011)

    Google Scholar 

  92. Dolores, R., Raquel, S., Adianez, G.-L.: Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: effect of ultrasonic frequency. Ultrason. Sonochem. 23, 391–398 (2015)

    Google Scholar 

  93. Bini, R.A., Marques, R.F.C., Santos, F.J., Chaker, J.A., Jafelicci, M.: Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes. J. Magn. Magn. Mater. 324(4), 534–539 (2012)

    ADS  Google Scholar 

  94. Yamaura, M., Camilo, R., Sampaio, L., Macedo, M., Nakamura, M., Toma, H.: Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279(2), 210–217 (2004)

    ADS  Google Scholar 

  95. Wahajuddin, S.A.: Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine. 7, 3445 (2012)

    Google Scholar 

  96. Kharisov, B.I., Dias, H.R., Kharissova, O.V., Vázquez, A., Pena, Y., Gomez, I.: Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv. 4(85), 45354–45381 (2014)

    Google Scholar 

  97. Saif, S., Tahir, A., Chen, Y.: Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 6(11), 209 (2016)

    Google Scholar 

  98. Xiao, Y., Lin, Z.T., Chen, Y., Wang, H., Deng, Y.L., Le, D.E., Bin, J., Li, M., Liao, Y., Liu, Y.: High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging. Int. J. Nanomedicine. 10, 1155–1172 (2015)

    Google Scholar 

  99. Yu, M., Huang, S., Yu, K.J., Clyne, A.M.: Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int. J. Mol. Sci. 13(5), 5554–5570 (2012)

    Google Scholar 

  100. Lee, H., Lee, E., Kim, D.K., Jang, N.K., Jeong, Y.Y., Jon, S.: Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J. Am. Chem. Soc. 128(22), 7383–7389 (2006)

    Google Scholar 

  101. Chaudhuri, B., Mondal, B., Ray, S., Sarkar, S.: A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids Surf. B: Biointerfaces. 143, 71–80 (2016)

    Google Scholar 

  102. Jiang, J.-S., Gan, Z.-F., Yang, Y., Du, B., Qian, M., Zhang, P.: A novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide. J. Nanopart. Res. 11(6), 1321–1330 (2009)

    ADS  Google Scholar 

  103. Sodipo, B.K., Aziz, A.A.: Sonochemical synthesis of silica coated super paramagnetic iron oxide nanoparticles. In: Materials Science Forum 2013, pp. 74–79. Trans Tech Publ

  104. Yang, L., Zou, P., Cao, J., Sun, Y., Han, D., Yang, S., Chen, G., Kong, X., Yang, J.: Facile synthesis and paramagnetic properties of Fe3O4@ SiO2 core–shell nanoparticles. Superlattice. Microst. 76, 205–212 (2014)

    ADS  Google Scholar 

  105. Al-Sabagh, A., Moustafa, Y., Hamdy, A., Killa, H., Ghanem, R., Morsi, R.: Preparation and characterization of sulfonated polystyrene/magnetite nanocomposites for organic dye adsorption. Egypt. J. Pet. (2017)

  106. Koesnarpadi, S., Santosa, S.J., Siswanta, D., Rusdiarso, B.: Synthesis and characterizatation of magnetite nanoparticle coated humic acid (Fe3O4/HA). Procedia Environ. Sci. 30, 103–108 (2015)

    Google Scholar 

  107. Elfeky, S.A., Mahmoud, S.E., Youssef, A.F.: Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J. Adv. Res. (2017)

  108. Wan, S., Zheng, Y., Liu, Y., Yan, H., Liu, K.: Fe3O4 nanoparticles coated with homopolymers of glycerol mono (meth) acrylate and their block copolymers. J. Mater. Chem. 15(33), 3424–3430 (2005)

    Google Scholar 

  109. Sun, S., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124(28), 8204–8205 (2002)

    Google Scholar 

  110. Lutz, J.-F., Stiller, S., Hoth, A., Kaufner, L., Pison, U., Cartier, R.: One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules. 7(11), 3132–3138 (2006)

    Google Scholar 

  111. Si, S., Kotal, A., Mandal, T.K., Giri, S., Nakamura, H., Kohara, T.: Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem. Mater. 16(18), 3489–3496 (2004)

    Google Scholar 

  112. Mousavi, Z., Salavati-Niasari, M., Soofivand, F., Esmaeili-Zare, M., Hamadanian, M.: Synthesis and characterization of hydrophilic and semiconductor cadmium chromite nanostructures. J. Electron. Mater. 45(11), 5739–5745 (2016)

    ADS  Google Scholar 

  113. Karaagac, O., Kockar, H.: Effect of synthesis parameters on the properties of superparamagnetic iron oxide nanoparticles. J. Supercond. Nov. Magn. 25(8), 2777–2781 (2012)

    Google Scholar 

  114. Nurdin, I.: The effect of temperature on synthesis and stability of superparamagnetic maghemite nanoparticles suspension. J. Mater. Sci. Chem. Eng. 4(03), 35 (2016)

    Google Scholar 

  115. Ramadan, W., Kareem, M., Hannoyer, B., Saha, S.: Effect of pH on the structural and magnetic properties of magnetite nanoparticles synthesised by co-precipitation. In: Adv. Mater. Res. 2011, pp. 129–132. Trans Tech Publ

  116. Zhang, Y., Liu, J.-Y., Ma, S., Zhang, Y.-J., Zhao, X., Zhang, X.-D., Zhang, Z.-D.: Synthesis of PVP-coated ultra-small Fe3O4 nanoparticles as a MRI contrast agent. J. Mater. Sci. Mater. Med. 21(4), 1205–1210 (2010)

    Google Scholar 

  117. Khoshnevisan, K., Barkhi, M., Zare, D., Davoodi, D., Tabatabaei, M.: Preparation and characterization of CTAB-coated Fe3O4 nanoparticles. Synth. React. Inorg. Met-Org. Nano-Met. Chem. 42(5), 644–648 (2012)

    Google Scholar 

  118. Osuna, Y., Gregorio-Jauregui, K.M., Gaona-Lozano, J.G., de la Garza-Rodríguez, I.M., Ilyna, A., Barriga-Castro, E.D., Saade, H., López, R.G.: Chitosan-coated magnetic nanoparticles with low chitosan content prepared in one-step. J. Nanomater. 2012, 103 (2012)

    Google Scholar 

  119. Wang, J., Zhang, B., Wang, L., Wang, M., Gao, F.: One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains. Mater. Sci. Eng. C. 48, 416–423 (2015)

    Google Scholar 

  120. Okoli, C., Sanchez-Dominguez, M., Boutonnet, M., Järås, S., Civera, C.N., Solans, C., Kuttuva, G.R.: Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir. 28(22), 8479–8485 (2012)

    Google Scholar 

  121. Hou, Y., Yu, J., Gao, S.: Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J. Mater. Chem. 13(8), 1983–1987 (2003)

    Google Scholar 

  122. Tavakoli, A., Sohrabi, M., Kargari, A.: A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap. 61(3), 151–170 (2007)

    Google Scholar 

  123. Xiao, L., Li, J., Brougham, D.F., Fox, E.K., Feliu, N., Bushmelev, A., Schmidt, A., Mertens, N., Kiessling, F., Valldor, M.: Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano. 5(8), 6315–6324 (2011)

    Google Scholar 

  124. Kovář, D., Malá, A., Mlčochová, J., Kalina, M., Fohlerová, Z., Hlaváček, A., Farka, Z., Skládal, P., Starčuk, Z., Jiřík, R.: Preparation and characterisation of highly stable iron oxide nanoparticles for magnetic resonance imaging. J. Nanomater. 2017, (2017)

  125. Fu, C., Zhou, H., Wang, Y., Liu, D., Li, J., Deng, H., Qi, X., Chen, T., Zhang, L.-M., Li, G.: One-pot synthesis of dextran-coated iron oxide nanoclusters for real-time regional lymph node mapping. Int. J. Nanomedicine. 12, 3365 (2017)

    Google Scholar 

  126. Kim, E.H., Ahn, Y., Lee, H.S.: Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J. Alloys Compd. 434, 633–636 (2007)

    Google Scholar 

  127. Gogoi, P., Thakur, A.J., Devi, R.R., Das, B., Maji, T.K.: Adsorption of As (V) from contaminated water over chitosan coated magnetite nanoparticle: equilibrium and kinetics study. Environ. Nanotechnol. Monit. Manag. 8, 297–305 (2017)

    Google Scholar 

  128. Cheraghipour, E., Javadpour, S., Mehdizadeh, A.R.: Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomed. Sci. Eng. 5(12), 715 (2012)

    Google Scholar 

  129. Jurkin, T., Gotić, M., Štefanić, G., Pucić, I.: Gamma-irradiation synthesis of iron oxide nanoparticles in the presence of PEO, PVP or CTAB. Radiat. Phys. Chem. 124, 75–83 (2016)

    ADS  Google Scholar 

  130. Arsalani, N., Fattahi, H., Nazarpoor, M.: Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett. 4(6), 329–338 (2010)

    Google Scholar 

  131. Tan, X., Wang, Z., Yang, J., Song, C., Zhang, R., Cui, Y.: Polyvinylpyrrolidone-(PVP-)coated silver aggregates for high performance surface-enhanced Raman scattering in living cells. Nanotechnology. 20(44), 445102 (2009)

    Google Scholar 

  132. Ziaei-Azad, H., Semagina, N.: Bimetallic catalysts: requirements for stabilizing PVP removal depend on the surface composition. Appl. Catal. A Gen. 482, 327–335 (2014)

    Google Scholar 

  133. Koczkur, K.M., Mourdikoudis, S., Polavarapu, L., Skrabalak, S.E.: Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883–17905 (2015)

    Google Scholar 

  134. Thakur, V.K., Thakur, M.K., Gupta, R.K.: Hybrid polymer composite materials: structure and chemistry. Woodhead Publishing (2017)

  135. Vadivel, M., Babu, R.R., Ramamurthi, K., Arivanandhan, M.: Effect of PVP concentrations on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles. Nano-Struct Nano-Objects. 11, 112–123 (2017)

    Google Scholar 

  136. Prabha, G., Raj, V.: Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications. J. Magn. Magn. Mater. 408, 26–34 (2016)

    ADS  Google Scholar 

  137. Karimzadeh, I., Aghazadeh, M., Ganjali, M.R., Norouzi, P., Shirvani-Arani, S., Doroudi, T., Kolivand, P.H., Marashi, S.A., Gharailou, D.: A novel method for preparation of bare and poly (vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater. Lett. 179, 5–8 (2016)

    Google Scholar 

  138. Rhazi, M., Desbrieres, J., Tolaimate, A., Alagui, A., Vottero, P.: Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan. Polym. Int. 49(4), 337–344 (2000)

    Google Scholar 

  139. Alabaraoye, E., Achilonu, M., Hester, R.: Biopolymer (chitin) from various marine seashell wastes: isolation and characterization. J. Polym. Environ. 1–12 (2017)

  140. Kim, I.-Y., Seo, S.-J., Moon, H.-S., Yoo, M.-K., Park, I.-Y., Kim, B.-C., Cho, C.-S.: Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26(1), 1–21 (2008)

    Google Scholar 

  141. Aranaz, I., Harris, R., Heras, A.: Chitosan amphiphilic derivatives. Chemistry and applications. Curr. Org. Chem. 14(3), 308–330 (2010)

    Google Scholar 

  142. Kang, M.L., Cho, C.S., Yoo, H.S.: Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol. Adv. 27(6), 857–865 (2009)

    Google Scholar 

  143. Chen, H.-J., Zhang, Z.-H., Luo, L.-J., Yao, S.-Z.: Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin. Sensors Actuators B Chem. 163(1), 76–83 (2012)

    Google Scholar 

  144. Gupta, A.K., Naregalkar, R.R., Vaidya, V.D., Gupta, M.: Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. (2007)

  145. Catalano, E., Di Benedetto, A.: Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy. arXiv preprint arXiv:1706.02590 (2017)

  146. Liu, Y., Jia, S., Wu, Q., Ran, J., Zhang, W., Wu, S.: Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal. Commun. 12(8), 717–720 (2011)

    Google Scholar 

  147. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., Li, C., Gao, H.-J.: Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C. 112(30), 11336–11339 (2008)

    Google Scholar 

  148. Freire, T., Dutra, L.M., Queiroz, D., Ricardo, N., Barreto, K., Denardin, J., Wurm, F.R., Sousa, C., Correia, A., de Lima-Neto, P.: Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor. Carbohydr. Polym. 151, 760–769 (2016)

    Google Scholar 

  149. Wan, J., Wang, J.-H., Liu, T., Xie, Z., Yu, X.-F., Li, W.: Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. Sci. Rep. 5(11398), (2015)

  150. Smith, D.K., Korgel, B.A.: The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir. 24(3), 644–649 (2008)

    Google Scholar 

  151. Okuno, Y., Nishioka, K., Kiya, A., Nakashima, N., Ishibashi, A., Niidome, Y.: Uniform and controllable preparation of Au–Ag core–shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale. 2(8), 1489–1493 (2010)

    ADS  Google Scholar 

  152. Mehta, S., Kumar, S., Chaudhary, S., Bhasin, K.: Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles. Nanoscale Res. Lett. 4(10), 1197 (2009)

    ADS  Google Scholar 

  153. Sau, T.K., Murphy, C.J.: Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 20(15), 6414–6420 (2004)

    Google Scholar 

  154. Gong, T., Goh, D., Olivo, M., Yong, K.-T.: In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and pluronic block copolymers. Beilstein Journal of Nanotechnology. 5, 546 (2014)

    Google Scholar 

  155. Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., Wyatt, M.D.: Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 1(3), 325–327 (2005)

    Google Scholar 

  156. Zhang, Y., Xu, D., Li, W., Yu, J., Chen, Y.: Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J. Nanomater. 7, 2012, (2012)

  157. Grabinski, C., Schaeublin, N., Wijaya, A., D’Couto, H., Baxamusa, S.H., Hamad-Schifferli, K., Hussain, S.M.: Effect of gold nanorod surface chemistry on cellular response. ACS Nano. 5(4), 2870–2879 (2011)

    Google Scholar 

  158. Soenen, S.J., Manshian, B., Montenegro, J.M., Amin, F., Meermann, B.R., Thiron, T., Cornelissen, M., Vanhaecke, F., Doak, S., Parak, W.J.: Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano. 6(7), 5767–5783 (2012)

    Google Scholar 

  159. Gorelikov, I., Matsuura, N.: Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 8(1), 369–373 (2008)

    ADS  Google Scholar 

  160. Wang, H., Zhao, X., Meng, W., Wang, P., Wu, F., Tang, Z., Han, X., Giesy, J.P.: Cetyltrimethylammonium bromide-coated Fe3O4 magnetic nanoparticles for analysis of 15 trace polycyclic aromatic hydrocarbons in aquatic environments by ultraperformance, liquid chromatography with fluorescence detection. Anal. Chem. 87(15), 7667–7675 (2015)

    Google Scholar 

  161. Celis, J.A., Mejía, O.O., Cabral-Prieto, A., García-Sosa, I., Derat-Escudero, R., Saitovitch, E.B., Camarena, M.A.: Synthesis and characterization of nanometric magnetite coated by oleic acid and the surfactant CTAB. Hyperfine Interact. 238(1), 43 (2017)

    ADS  Google Scholar 

  162. Faraji, M., Yamini, Y., Tahmasebi, E., Saleh, A., Nourmohammadian, F.: Cetyltrimethylammonium bromide-coated magnetite nanoparticles as highly efficient adsorbent for rapid removal of reactive dyes from the textile companies’ wastewaters. J. Iran. Chem. Soc. 7, S130–S144 (2010)

    Google Scholar 

  163. Rajabi, A.A., Yamini, Y., Faraji, M., Nourmohammadian, F.: Modified magnetite nanoparticles with cetyltrimethylammonium bromide as superior adsorbent for rapid removal of the disperse dyes from wastewater of textile companies. Nanochem. Res. 1(1), 49–56 (2016)

    Google Scholar 

  164. Soares, P.I., Alves, A.M., Pereira, L.C., Coutinho, J.T., Ferreira, I.M., Novo, C.M., Borges, J.P.: Effects of surfactants on the magnetic properties of iron oxide colloids. J. Colloid Interface Sci. 419, 46–51 (2014)

    ADS  Google Scholar 

  165. Zhang, Z., Wu, Y.: Investigation of the NaBH4-induced aggregation of Au nanoparticles. Langmuir. 26(12), 9214–9223 (2010)

    Google Scholar 

  166. Szekeres, M., Tóth, I.Y., Illés, E., Hajdú, A., Zupkó, I., Farkas, K., Oszlánczi, G., Tiszlavicz, L., Tombácz, E.: Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int. J. Mol. Sci. 14(7), 14550–14574 (2013)

    Google Scholar 

  167. Ramírez-Ceja, D., González, L.A., Escorcia-García, J., Martínez-Enríquez, A.I.: Characterization of PbS thin films obtained by chemical bath at low temperature using sodium citrate as complexing agent. MRS Advances. 1(37), 2623–2628 (2016)

    Google Scholar 

  168. Sadeghi, R., Ziamajidi, F.: Apparent molar volume and isentropic compressibility of trisodium citrate in water and in aqueous solutions of polyvinylpyrrolidone at T=(283.15 to 308.15) K. J. Chem. Eng. Data. 52(3), 1037–1044 (2007)

    Google Scholar 

  169. Henintsoa, M., Becquer, T., Rabeharisoa, L., Gerard, F.: Geochemical and microbial controls of the effect of citrate on phosphorus availability in a ferralsol. Geoderma. 291, 33–39 (2017)

    ADS  Google Scholar 

  170. Bee, A., Massart, R., Neveu, S.: Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 149(1–2), 6–9 (1995)

    ADS  Google Scholar 

  171. Liu, C., Huang, P.: Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions. Soil Sci. Soc. Am. J. 63(1), 65–72 (1999)

    ADS  Google Scholar 

  172. Saraswathy, A., Nazeer, S.S., Jeevan, M., Nimi, N., Arumugam, S., Harikrishnan, V.S., Varma, P.H., Jayasree, R.S.: Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis. Colloids Surf. B: Biointerfaces. 117, 216–224 (2014)

    Google Scholar 

  173. Zhou, Z., Zhao, Z., Zhang, H., Wang, Z., Chen, X., Wang, R., Chen, Z., Gao, J.: Interplay between longitudinal and transverse contrasts in Fe3O4 nanoplates with (111) exposed surfaces. ACS Nano. 8(8), 7976–7985 (2014)

    Google Scholar 

  174. Ravichandran, M., Velumani, S., Ramirez, J.T.: Water-dispersible magnetite nanoparticles as T 2 MR imaging contrast agent. Biomed. Phys. Eng. Express. 3(1), 015011 (2017)

    Google Scholar 

  175. Tromsdorf, U.I., Bruns, O.T., Salmen, S.C., Beisiegel, U., Weller, H.: A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 9(12), 4434–4440 (2009)

    ADS  Google Scholar 

  176. Pankhurst, Q., Thanh, N., Jones, S., Dobson, J.: Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42(22), 224001 (2009)

    ADS  Google Scholar 

  177. Thomas, L.A., Dekker, L., Kallumadil, M., Southern, P., Wilson, M., Nair, S.P., Pankhurst, Q.A., Parkin, I.P.: Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J. Mater. Chem. 19(36), 6529–6535 (2009)

    Google Scholar 

  178. Bauer, L.M., Situ, S.F., Griswold, M.A., Samia, A.C.S.: High-performance iron oxide nanoparticles for magnetic particle imaging–guided hyperthermia (hMPI). Nanoscale. 8(24), 12162–12169 (2016)

    ADS  Google Scholar 

  179. Lu, F., Popa, A., Zhou, S., Zhu, J.-J., Samia, A.C.S.: Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia. Chem. Commun. 49(97), 11436–11438 (2013)

    Google Scholar 

  180. Jadhav, N.V., Prasad, A.I., Kumar, A., Mishra, R., Dhara, S., Babu, K., Prajapat, C., Misra, N., Ningthoujam, R., Pandey, B.: Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surf. B: Biointerfaces. 108, 158–168 (2013)

    Google Scholar 

  181. Maity, D., Chandrasekharan, P., Pradhan, P., Chuang, K.-H., Xue, J.-M., Feng, S.-S., Ding, J.: Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J. Mater. Chem. 21(38), 14717–14724 (2011)

    Google Scholar 

Download references

Funding

The authors thoroughly acknowledged the Ministry of Higher Education (MOHE) and Universiti Sains Malaysia through FRGS Grant 203/PFIZIK/6763003 for the full support of this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Osama Abu Noqta or Azlan Abdul Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noqta, O.A., Aziz, A.A., Usman, I.A. et al. Recent Advances in Iron Oxide Nanoparticles (IONPs): Synthesis and Surface Modification for Biomedical Applications. J Supercond Nov Magn 32, 779–795 (2019). https://doi.org/10.1007/s10948-018-4939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4939-6

Keywords

Navigation