Skip to main content
Log in

Multiferroic Properties of (Bi0.9Gd0.1FeO)1−x (BaTiO3) x Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Conventional solid-state reaction method has been employed for the synthesis of polycrystalline (Bi0.9Gd0.1FeO)1−x (BaTiO3) x for x=0.1, 0.2 and 0.3, ceramics samples. The effect of BaTiO3 content on the multiferroic properties of Gd-doped BiFeO3 ceramics has been presented. Pure perovskite phase with high density has been obtained by optimizing the synthesis approach, calcination and sintering strategies. Structural analysis carried out using X-ray diffraction confirms the formation of desired morphotropic phase. The dielectric properties have been investigated at different concentration of BaTiO3 as function of temperature, revealing that by increasing the BaTiO3 content dielectric constant increases while dielectric losses decrease. Magnetic study shows that initially saturation magnetization increases with increase in BaTiO3 content up to x=0.1; however, afterwards it decreases for higher concentration of BaTiO3. According to ferroelectric measurements, PE loops (with low coercive field) are observed at room temperature. The remnant polarization (P r ) has been found to be 0.169, 0.619 and 0.760 μC/cm2, respectively, for samples with x=0.1, 0.2 and 0.3. Magnetoelectric coupling in as-synthesized samples has been indirectly deduced by an anomaly observed at magnetic transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Catalan, G.: Appl. Phys. Lett. 88, 102902 (2006)

    Article  ADS  Google Scholar 

  2. Hill, N.A.: J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  3. Sosnowska, I., Prezenioslo, R., Fischer, P., Murashov, V.A.: J. Magn. Magn. Mater. 160, 384 (1996)

    Article  ADS  Google Scholar 

  4. Neaton, J.B., Edrer, C., Waghmare, U.V., Splaldin, N.A., Rabe, K.M.: Phys. Rev. B 71, 014113 (2005)

    Article  ADS  Google Scholar 

  5. Cheng, Z.X., Wang, X.L., Ozawa, K., Kimura, H.: Appl. Phys. Lett. 40, 703 (2007)

    Google Scholar 

  6. Lin, Y.H., Jiang, Q., Wang, Y., Nan, C.W., Chen, L., Yu, J.: Appl. Phys. Lett. 90, 172507 (2007)

    Article  ADS  Google Scholar 

  7. Cheng, Z.X., Wang, X.L., Dou, S.X., Kimura, H., Ozawa, K.: J. Appl. Phys. 104, 116109 (2008)

    Article  ADS  Google Scholar 

  8. Yuan, G.L., Or, S.W., Liu, J.M., Liu, Z.G.: Appl. Phys. Lett. 89, 052905 (2006)

    Article  ADS  Google Scholar 

  9. Uniyal, P., Yadav, K.L.: Mater. Lett. 62, 2858 (2008)

    Article  Google Scholar 

  10. Uniyal, P., Yadav, K.L.: J. Appl. Phys. 105, 07D914 (2009)

    Article  Google Scholar 

  11. Wang, D.H., Goh, W.C., Ning, M., Ong, C.K.: Appl. Phys. Lett. 88, 212907 (2006)

    Article  ADS  Google Scholar 

  12. Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Kholkin, A.L., Sa, M.A., Pogorelov, Y.G.: Appl. Phys. Lett. 90, 242901 (2007)

    Article  ADS  Google Scholar 

  13. Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Li, J., Kholkin, A.L., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., Maglione, M.J.: Appl. Phys. Lett. 103, 024105 (2008)

    Google Scholar 

  14. Kumar, M.M., Srinivas, A., Suryanarayana, S.V.: J. Appl. Phys. 87, 855 (2000)

    Article  ADS  Google Scholar 

  15. Kim, J.S., Cheon, C., Lee, C., Jang, P.: J. Appl. Phys. 96, 468 (2004)

    Article  ADS  Google Scholar 

  16. Ozaki, T., Kitagawa, S., Nishihara, S., Hosokoshi, Y., Suzuki, M., Noguchi, Y., Miyayama, M., Mori, S.: Ferroelectrics 385, 155 (2009)

    Article  Google Scholar 

  17. Gotardo, R.A.M., Viana, D.S.F., Dionysio, M.O., Souza, S.D., Garcia, D., Eiras, J.A., Alves, M.F.S., Cotica, L.F., Santos, I.A., Coelho, A.A.: J. Appl. Phys. 112, 104112 (2012)

    Article  ADS  Google Scholar 

  18. Kumar, M.M., Srinivas, A., Kumar, G.S., Surnarayana, S.V.: J. Phys. Condens. Mater. 11, 8131 (1999)

    Article  ADS  Google Scholar 

  19. Pradhan, D.K., Choudhary, R.N.P., Rinaldi, C., Katiyar, R.S.: Appl. Phys. Lett. 106, 024102 (2009)

    Google Scholar 

  20. Lotey, G.S., Verma, N.K.: J. Nanopart. Res. 14, 742 (2012)

    Article  Google Scholar 

  21. Lotey, G.S., Verma, N.K.: J. Nanopart. Res. 15, 1553 (2013)

    Article  Google Scholar 

  22. Koops, C.G.: Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  23. Mishra, R.K., Pradhan, D.K., Choudhary, R.N.P., Banerjee, A.: J. Phys. Condens. Matter 20, 045218 (2008)

    Article  ADS  Google Scholar 

  24. Rai, R., Bdikin, I., Valente, M.A., Kholkin, A.L.: Mater. Chem. Phys. 119, 539 (2010)

    Article  Google Scholar 

  25. Possenriede, E., Jacobs, P., Schirmer, O.F.: J. Phys. Condens. Matter 4, 4719 (1992)

    Article  ADS  Google Scholar 

  26. Singh, A., Pandey, V., Kotnala, R.K., Pandey, D.: Phys. Rev. Lett. 101, 247602 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Uniyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uniyal, P., Lotey, G.S., Gautam, A. et al. Multiferroic Properties of (Bi0.9Gd0.1FeO)1−x (BaTiO3) x Ceramics. J Supercond Nov Magn 27, 569–574 (2014). https://doi.org/10.1007/s10948-013-2311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2311-4

Keywords

Navigation