Skip to main content
Log in

Electronic structure of cubic tungsten subnitride W2N in comparison to hexagonal and cubic tungsten mononitrides WN

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A full potential FLAPW-GGA method is used to study for the first time the electronic structure of cubic tungsten subnitride W2N, and its equilibrium lattice parameter, density, energy of cohesion, coefficients of low temperature heat capacity and Pauli paramagnetic susceptibility are calculated. It is discussed in comparison to the similar values of hexagonal and cubic tungsten mononitrides WN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Veprek, M. Haussmann, S. Reiprich, et al., Surf. Coat. Technol., 86, No. 103, 394–401 (1996).

    Article  Google Scholar 

  2. M. H. Tsai, S. C. Sun, H. T. Chiu, and S. H. Chuang, Appl. Phys. Lett., 68, No. 10, 1412–1414 (1996).

    Article  CAS  Google Scholar 

  3. D. J. Li, M. X. Wang, J. J. Zhang, and J. Yang, J. Vacuum Sci. Technol., 24, No. 4, 966–969 (2006).

    Article  CAS  Google Scholar 

  4. M. X. Wang, J. J. Zhang, J. Yang, et al., Surf. Coat. Technol., 201, No. 15, 6800–6803 (2007).

    Article  CAS  Google Scholar 

  5. S. H. Mohamed, ibid., 202, No. 10, 2169–2175 (2008).

    Article  CAS  Google Scholar 

  6. B. H. Lee and K. Yong, J. Vacuum Sci. Technol., 22, No. 5, 2375–2379 (2004).

    Article  CAS  Google Scholar 

  7. A. V. Kuchuk, V. P. Kladro, V. F. Mashulin, et al., Rev. Adv. Mater. Sci., 8, No. 1, 22–26 (2004).

    CAS  Google Scholar 

  8. S. Guruvenket and G. M. Rao, Mater. Sci. Eng. B-Solid-Mater. Adv. Technol., 106, No. 2, 172–176 (2004).

    Article  Google Scholar 

  9. T. Yamamoto, M. Kawate, H. Hasegawa, and T. Suzuki, Surf. Coat. Technol., 193, Nos. 1–3, 372–374 (2005).

    Article  CAS  Google Scholar 

  10. M. K. Neylon, S. K. Bej, C. A. Bennett, and L. T. Thompson, Appl. Catal., A232, No. 102, 13–21 (2002).

    Google Scholar 

  11. R. C. V McGee, S. K, Bej and L. T. Thompson, ibid., A284, Nos. 1–2, 139–146 (2005).

    Google Scholar 

  12. J. D. Houmes, S. Deo, and H. C. zur Loye, J. Solid State Chem., 131, No. 2, 274–378 (1997).

    Article  Google Scholar 

  13. S. Jeon and K. J. Yong, Nanotechnology, 18, No. 24, art. 245602 (2007).

  14. H. J. Goldschmidt, Interstitial Alloys, Butterworth, London (1967).

    Google Scholar 

  15. D. V. Suetin, I. R. Shein, and A. L. Ivanovskii, Physica Status Solidi, B245, No. 8, 1590–1597 (2008).

    Article  Google Scholar 

  16. I. R. Shein, D. V. Suetin, and A. L. Ivanovskii, Pis’ma Zh. Tekh. Fiz., 34, No. 19, 53–59 (2008).

    Google Scholar 

  17. E. J. Zhao and Z. J. Wu, J. Solid State Chem., 181, No. 10, 2814–2827 (2008).

    Article  CAS  Google Scholar 

  18. D. V. Suetin, I. R. Shein, and A. L. Ivanovskii, J. Struct. Chem., 50, No. 1, 1–9 (2009).

    Article  CAS  Google Scholar 

  19. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna Univ. Technol., Vienna (2001).

    Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, No. 8, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  21. P. E. Blochl, O. Jepsen, and O. K. Anderson, Phys. Rev., B49, No. 23, 16223–16233 (1994).

    Google Scholar 

  22. G. V. Samsonov and I. M. Vinnitskii, High Melting Compounds [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  23. M. V. Ryzhkov and A. L. Ivanovskii, Zh. Neorg. Khim., 45, No. 12, 1883–1889 (2000).

    Google Scholar 

  24. A. L. Ivanovskii and N. I. Medvedeva, Mendeleev Commun., 11, No. 1, 10/11 (2001).

    Google Scholar 

  25. N. I. Medvedeva and A. L. Ivanovskii, Fiz. Tverd. Tela, 43, No. 3, 452–455 (2001).

    Google Scholar 

  26. A. L. Ivanovskii, N. I. Medvedeva, and S. V. Okatov, Neorg. Mater., 37, No. 65, 552–559 (2001).

    Google Scholar 

  27. A. L. Ivanovskii, I. R. Shein, and N. I. Medvedeva, Russian Chem. Rev. 77, No. 5, 491–511 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Additional information

Original Russian Text Copyright © 2010 by D. V. Suetin, I. R. Shein, and A. L. Ivanovskii

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 51, No. 2, pp. 213–217, March–April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suetin, D.V., Shein, I.R. & Ivanovskii, A.L. Electronic structure of cubic tungsten subnitride W2N in comparison to hexagonal and cubic tungsten mononitrides WN. J Struct Chem 51, 199–203 (2010). https://doi.org/10.1007/s10947-010-0031-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-010-0031-1

Keywords

Navigation