Skip to main content
Log in

Effect of Orientation on the Morphology and Mechanical Properties of PLA/Starch Composite Filaments

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA)/starch fibers were produced by twin screw extrusion of PLA with granular or gelatinized starch/glycerol followed by drawing through a set of winders with an intermediate oven. At 30% starch, fibers drawn 2–5x were highly flexible (elongation 20–100%) while undrawn filaments were brittle (elongation 2–9%). Tensile strength and moduli increased with increasing draw ratio but decreased with increasing starch content. Mechanical properties were better for composites made with gelatinized starch/glycerol than granular starch. In conclusion, orientation greatly increases the flexibility of PLA/starch composites and this may be useful not only in fibers but also possibly in molded articles. Other advantages of starch addition could include fiber softness without added plasticizer, moisture/odor absorbency and as a carrier for active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Philip S, Keshavarz T, Roy I (2007) J Chem Technol Biotechnol 82:233

    Article  CAS  Google Scholar 

  2. Lenz RW, Marchessault RH (2005) Biomacromol 6:1

    Article  CAS  Google Scholar 

  3. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  4. Lindblad MS, Liu Y, Albertsson A-C, Ranucci E, Karlsson S (2002) Adv Polym Sci 157:139

    Article  CAS  Google Scholar 

  5. Gupta B, Revagade N, Hilborn J (2007) Prog Polym Sci 32:455

    Article  CAS  Google Scholar 

  6. Shen L, Worrell E, Patel M (2010) Biofuels, Bioproducts Biorefining 4:25

    Article  CAS  Google Scholar 

  7. Yu L, Dean K, Li L (2006) Prog Polym Sci 31:576

    Article  CAS  Google Scholar 

  8. Averous L (2004) J Macromol Sci Polym Rev 44:231

    Google Scholar 

  9. Kalambur S, Rizvi SSH (2006) J Plastic Film Sheeting 22:39

    Article  CAS  Google Scholar 

  10. Ke T, Sun X (2000) Cereal Chem 77:761

    Article  CAS  Google Scholar 

  11. Wang H, Sun X, Seib P (2001) J Appl Polym Sci 82:1761

    Article  CAS  Google Scholar 

  12. Phetwarotai W, Potiyaraj P, Aht-Ong D (2010) J Appl Polym Sci 116:2305

    CAS  Google Scholar 

  13. Zhang J-F, Sun X (2004) Biomacromol 5:1446

    Article  CAS  Google Scholar 

  14. Schwach E, Six J-L, Averous L (2008) J Polym Environ 16:286

    Article  CAS  Google Scholar 

  15. Orozco VH, Brostow W, Chonkaew W, Lopez BL (2009) Macromol Symp 277:69

    Article  CAS  Google Scholar 

  16. Wang N, Yu J, Ma X (2007) Polym Int 56:1440

    Article  CAS  Google Scholar 

  17. Shogren R (2007) Biomacromol 8:3641

    Article  CAS  Google Scholar 

  18. Chapleau N, Huneault MA, Li H (2007) Int Polym Process 22:402

    Article  CAS  Google Scholar 

  19. Jiang L, Liu B, Zhang J (2009) Macromol Mater Eng 294:301

    Article  CAS  Google Scholar 

  20. Bond EB, Autran J-PM, Mackey LN, Noda I, O’Donnell HJ (2005) US Pat Appl 20050026529

  21. Bastioli C, Bellotti V, Montino A, Tredici GD, Lombi R, Ponti R (1995) US Pat 5,412,005

  22. Finkenstadt VL, Liu LS, Willett JL (2007) J Polym Environ 15:1

    Article  CAS  Google Scholar 

  23. Willett JL (1994) J Appl Polym Sci 54:1685

    Article  CAS  Google Scholar 

  24. Shogren RL (1995) J Polym Environ 3:75

    Article  CAS  Google Scholar 

  25. Biresaw G, Carriere CJ (2000) J Polym Sci Pt B Polym Phys 39:920

    Article  Google Scholar 

  26. Nicholais L, Narkis M (1971) J Appl Polym Sci 15:469

    Article  Google Scholar 

  27. Jacobsen S, Fritz HG (1996) Polym Eng Sci 36:2799

    Article  CAS  Google Scholar 

  28. Throne JL (1996) Thermoplastic foams. Sherwood Publ, Hinckley, p 429

    Google Scholar 

  29. Thunwall M, Boldizar A, Rigdahl M (2006) Biomacromol 7:981

    Article  CAS  Google Scholar 

  30. Wang N, Yu J, Chang PR, Ma X (2007) Starch/Stärke 59:409

    Article  CAS  Google Scholar 

  31. Altpeter H, Bevis MJ, Gomes ME, Cunha AM, Reis RL (2003) Plastics, Rubber Compos 32:173

    Article  CAS  Google Scholar 

  32. Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR (2008) Macromol Mater Eng 293:763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brian Jasberg, Gary Grose, Kathy Hornback, Elizabeth Krietemeyer, Kelly Utt, Ashley Maness and Dr. Arthur Thompson for assistance with extrusion and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randal L. Shogren.

Additional information

The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over the firms or similar products not mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shogren, R.L., Selling, G. & Willett, J.L. Effect of Orientation on the Morphology and Mechanical Properties of PLA/Starch Composite Filaments. J Polym Environ 19, 329–334 (2011). https://doi.org/10.1007/s10924-010-0267-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0267-z

Keywords

Navigation