Skip to main content
Log in

Controlled Delivery of Brain Derived Neurotrophic Factor and Gold-Nanoparticles from Chitosan/TPP Nanoparticles for Tissue Engineering Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Brain derived neurotrophic factor (BDNF) is highly effective in the treatment of various diseases, and selected for growth factor delivery system. Also, gold-nanoparticles (AuNPs) plays the paramount role in diagnosis and treatment of diseases. The aim of this study is to encapsulate BDNF and AuNPs in chitosan nanoparticles and its effect on human adipose derived stem cells (h-ADSCs) proliferation was evaluated. The ratio of 1:3 chitosan/TPP was determined as the optimum ratio, BDNF or AuNPs were added to 0.1% chitosan solution for preparation of nanoparticles. The release rate of BDNF and AuNPs were assessed by Bradford test and inductive coupled plasma optical emission spectrometry technique, respectively. In this study, BDNF and AuNPs loading efficiency were 89.46 ± 2.77 (%) and 93.8 ± 2.12 (%), respectively. The kinetic release of BDNF is 83.28 ± 2.22 (%) and AuNPs release rate was 48.4 ± 0.108(%), during the 7 days. MTT findings demonstrated h-ADSCs viability in the presence encapsulated BDNF and AuNPs is significantly more than control group on 3 and 7 days (p < 0.05). These findings indicate the controlled release of encapsulated BDNF and AuNPs, and synergist effects of nanoparticles on h-ADSCs viability; it suggests an efficient delivery of BDNF and AuNPs, for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. H. Razavi, N. Ghasemi, M. Mardani, E. Esfandiari, and H. Salehi (2015). Adv. Biomed. Res.4, 53.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. A. H. Nagahara and M. H. Tuszynski (2011). Drug Discov.10, 3.

    Google Scholar 

  3. G. Lin, H. Zhang, F. Sun, Z. Lu, A. Reed-Maldonado, Y.-C. Lee, G. Wang, et al. (2016). Transl. Androl. Urol.5, 16.

    Google Scholar 

  4. G. Fulgenzi, F. Tomassoni-Ardori, L. Babini, J. Becker, C. Barrick, S. Puverel, and L. Tessarollo (2015). J. Cell Biol.210, 6.

    Google Scholar 

  5. B. Yang, Q. Ren, J. Zhang, Q. Chen, and K. Hashimoto (2017). Transl. Psychiatry7, 5.

    Google Scholar 

  6. N. Feng, S. Huke, G. Zhu, C. G. Tocchetti, S. Shi, et al. (2015). Proc. Natl. Acad. Sci. USA112, 6.

    Google Scholar 

  7. S. Okada, M. Yokoyama, H. Toko, K. Tateno, J. Moriya, et al. (2012). Arterioscler. Thromb. Vasc. Biol.32, 8.

    Google Scholar 

  8. E. Pius-Sadowska and B. Machaliński (2017). J. Mol. Cell Cardiol.110, 21.

    Google Scholar 

  9. J. Leschik, R. Eckenstaler, K. Nieweg, P. Lichtenecker, T. Brigadski, K. Gottmann, V. Lessmann, et al. (2013). J. Cell. Sci.126, 21.

    Google Scholar 

  10. F. Cirulli, A. Berry, E. Chiarotti, and E. Alleva (2005). Hippocampus14, 7.

    Google Scholar 

  11. B. A. Hoshaw, J. E. Malberg, and I. Lucki (2005). Brain Res.1037, 1.

    Google Scholar 

  12. C. Giampà, E. Montagna, C. Dato, M. A. Melone, G. Bernardi, and F. R. Fusco (2013). PloS ONE8, e64037.

    PubMed  PubMed Central  Google Scholar 

  13. M. Werle and A. Bernkop-Schnürch (2006). Amino Acids30, 4.

    Google Scholar 

  14. R. Lee, M. Springer, W. Blanco-Bose, R. Shaw, et al. (2000). JACC102, 8.

    Google Scholar 

  15. G. Goya, V. Grazu, and M. Ibarra (2008). Curr. Nanosci.4, 1.

    CAS  Google Scholar 

  16. D. F. Emerich and C. G. Thanos (2006). Biomol. Eng.23, 4.

    Google Scholar 

  17. N. Sanvicens and M. P. Marco (2008). Trends Biotechnol.26, 8.

    Google Scholar 

  18. B. S. Sekhon (2010). Int. J. Pharm. Tech. Res.2, 1.

    Google Scholar 

  19. K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, and G. S. Kwon (2000). J. Controll. Release64, 1–3.

    Google Scholar 

  20. K. Bowman and K. W. Leong (2006). Int. J. Mol. Med.1, 2.

    Google Scholar 

  21. L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, and O. Farokhzad (2008). Clin. Pharmacol. Ther.83, 5.

    Google Scholar 

  22. N. Mohammadpour Dounighi, R. Eskandari, M. Avadi, H. Zolfagharian, et al. (2012). J. Venom. Anim. Toxins. Incl. Trop. Dis.18, 1.

    Google Scholar 

  23. W. B. Liechty, D. R. Kryscio, B. V. Slaughter, and N. A. Peppas (2010). Annu. Rev. Chem. Biomol. Eng.1, 149.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Han, D. Zhao, D. Li, X. Wang, et al. (2018). Polymers10, 1.

    Google Scholar 

  25. H. Zhang, S. Wu, Y. Tao, L. Zang, and Z. Su (2010). J. Nanomater.1, 3.

    Google Scholar 

  26. S. Vijayakumar, B. Malaikozhundan, N. Gobi, and B. Vaseeharan (2016). Limnologica61, 1.

    Google Scholar 

  27. M. A. Elgadir, M. S. Uddin, S. Ferdosh, A. Adam, A. J. K. Chowdhury, and M. Z. I. Sarker (2015). J. Food Drug Anal.23, 4.

    Google Scholar 

  28. V. Prasanna and R. Mantripragada (2014). UToledo Digit. Repos.243, 1.

    Google Scholar 

  29. R. Thaya, B. Malaikozhundan, S. Vijayakumar, J. Sivakamavalli, R. Jeyasekar, S. Shanthi, et al. (2016). Microb. Pathog.100, 12.

    Google Scholar 

  30. K. Saravanakumar, R. Chelliah, D. MubarakAli, E. Jeevithan, D. H. Oh, K. Kathiresan, and M. H. Wang (2018). Int. J. Biol. Macromol.118, 1144.

    Google Scholar 

  31. K. Saravanakumar, E. Jeevithan, R. Chelliah, K. Kathiresan, W. Wen-Hui, D. H. Oh, and M. H. Wang (2018). Int. J. Biol. Macromol.119, 1.

    Google Scholar 

  32. S. Zivanovic, J. Li, P. M. Davidson, and K. Kit (2007). Biomacromolecule8, 5.

    Google Scholar 

  33. H. Ueno, T. Mori, and T. Fujinaga (2001). Adv. Drug Deliv. Rev.52, 2.

    Google Scholar 

  34. J. Smith, E. Wood, and M. Dornish (2004). Pharm. Res.21, 1.

    Google Scholar 

  35. A. Rampino, M. Borgogna, P. Blasi, B. Bellich, and A. Cesàro (2013). Int. J. Pharm.455, 1–2.

    Google Scholar 

  36. E. Söderstjerna, F. Johansson, B. Klefbohm, and U. E. Johansson (2013). PloS ONE8, e58211.

    PubMed  PubMed Central  Google Scholar 

  37. Y. L. Lin, J. G. Jen, S. H. Hsu, and M. Chiu (2008). Surg. Neurol.70, 1.

    Google Scholar 

  38. N. Kawazoe and G. Chen (2015). Biomaterials54, 1.

    Google Scholar 

  39. D. Shenoy, W. Fu, J. Li, C. Crasto, G. Jones, C. DiMarzio, S. Sridhar, and M. Amiji (2006). Int. J. Mol. Med.1, 1.

    Google Scholar 

  40. H. Sun, J. Jia, C. Jiang, and S. Zhai (2018). Int. J. Mol. Sci.19, 754.

    PubMed Central  Google Scholar 

  41. W. Zheng, M. Wei, S. Li, and W. Le (2016). Nanomedicine11, 11.

    Google Scholar 

  42. C. D. Walkey, J. B. Olsen, H. Guo, A. Emili, and W. C. Chan (2012). JACS134, 4.

    Google Scholar 

  43. S. Anandhakumar, G. Krishnamoorthy, K. Ramkumar, and A. Raichur (2017). Mater. Sci. Eng. C70, 1.

    Google Scholar 

  44. S. W. Ali, M. Joshi, and S. Rajendran (2010). Adv. Sci. Lett.3, 9.

    Google Scholar 

  45. A. Regiel, S. Irusta, A. Kyzioł, M. Arruebo, and J. Santamaria (2012). Nanotechnology24, 1.

    Google Scholar 

  46. S. J. Wallace, J. Li, R. L. Nation, and B. J. Boyd (2012). Drug Deliv. Transl. Res.2, 4.

    Google Scholar 

  47. N. Schmidt, J. Schulze, D. P. Warwas, N. Ehlert, T. Lenarz, A. Warnecke, and P. Behrens (2018). PloS ONE13, e0194778.

    PubMed  PubMed Central  Google Scholar 

  48. M. Abyadeh, E. Sadroddiny, A. Ebrahimi, F. Esmaeili, F. Landi, and A. Amani (2017). Int. Nano Lett.7, 4.

    Google Scholar 

  49. D. R. Bhumkar and V. B. Pokharkar (2006). Aaps Pharmscitech7, 2.

    Google Scholar 

  50. L. Ruo (2012). Politecnico di Torino12, 3.

    Google Scholar 

  51. Z. Su, S. Wu, H. Zhang, and Y. Feng (2010). Pharm. Biol.48, 9.

    Google Scholar 

  52. Z. Zhang and S. S. Feng (2006). Biomaterials27, 21.

    CAS  Google Scholar 

  53. R. Stoica, R. Şomoghi, and R. Ion (2013). Dig. J. Nanomater. Biostruct.8, 3.

    Google Scholar 

  54. Y. Yang, C.-L. Long, H. P. Li, Q. Wang, et al. (2016). Sci. Total Environ.563, 1.

    Google Scholar 

  55. S. H. Razavi, M. Mardani, M. Kazemi, E. Esfandiari, M. Narimani, A. Esmaeili, and N. Ahmadi (2013). Cell Mol. Neurobiol.33, 2.

    Google Scholar 

  56. I. Khalin, R. Alyautdin, T. W. Wong, J. Gnanou, G. Kocherga, and J. Kreuter (2016). Drug Deliv.23, 9.

    Google Scholar 

  57. X. Zhou, L. Jin, R. Qi, and T. Ma (2018). R. Soc. Open Sci.5, 3.

    Google Scholar 

  58. A. Silva, B. Abrahim-Vieira, L. Carmo, and L. Amaral (2014). Br. J. Pharmacol.4, 17.

    Google Scholar 

  59. C. Li, Z. Li, Y. Wang, and H. Liu (2016). J. Nanomater.10, 4.

    Google Scholar 

  60. S. Jarudilokkul, A. Tongthammachat, and V. Boonamnuayvittaya (2011). Korean J. Chem. Eng.28, 1247.

    CAS  Google Scholar 

  61. M. Sasi, B. Vignoli, M. Canossa, and R. Blum (2017). Pflug Arch. Eur. J. Phys.469, 5–6.

    Google Scholar 

  62. B. Y. Chen, X. Wang, Z. Y. Wang, L. W. Chen, and Z. J. Luo (2013). J. Neurosci. Res.91, 1.

    Google Scholar 

  63. L. Ortiz-López, J. J. González-Olvera, N. M. Vega-Rivera, M. García-Anaya, A. K. Carapia-Hernández, J. C. Velázquez-Escobar, and G. B. Ramírez-Rodríguez (2017). Neuroscience355, 4.

    Google Scholar 

  64. S. Bathina and U. N. Das (2015). Arch. Med. Sci.11, 6.

    Google Scholar 

  65. C. Falcicchia, G. Paolone, D. F. Emerich, F. Lovisari, W. J. Bell, T. Fradet, L. U. Wahlberg, and M. Simonato (2018). Mol. Ther. Methods Clin. Dev.9, 9.

    Google Scholar 

  66. L. A. Caetano, A. J. Almeida, and L. Gonçalves (2016). Mar. Drugs14, 5.

    Google Scholar 

  67. A. R. Cho, Y. G. Chun, B. K. Kim, and D. J. Park (2014). J. Food Sci.79, 4.

    Google Scholar 

  68. J. Ko, H. Park, S. Wang, J. Lee, and J. Park (2002). Int. J. Pharm.249, 1.

    Google Scholar 

  69. K. G. H. Desai and H. J. Park (2005). Drug Dev. Res.64, 2.

    Google Scholar 

  70. V. J. Tom, H. R. Sandrow-Feinberg, K. Miller, C. Domitrovich, J. Bouyer, et al. (2013). Exp. Neurol.239, 91.

    CAS  PubMed  Google Scholar 

  71. M. Sandor, D. Enscore, P. Weston, and E. Mathiowitz (2001). J. Controll. Release76, 3.

    Google Scholar 

  72. R. A. Petros and J. M. DeSimone (2010). Nat. Rev. Drug Discov.9, 8.

    Google Scholar 

  73. H. Daraee, A. Eatemadi, E. Abbasi, and S. Fekri Aval (2016). Artif. Cells Nanomed. Biotechnol.44, 1.

    Google Scholar 

  74. S. Vijayakumara, B. Vaseeharana, B. Malaikozhundan, N. Gobi, S. Ravichandran, S. Karthi, B. Ashokkumar, and N. Sivakumar (2017). Microb. Pathog.110, 1.

    Google Scholar 

  75. S. Vijayakumar, K. Saravanakumar, X. Hu, and M. H. Wang (2019). J. Clust. Sci.4, 3.

    Google Scholar 

  76. M. Wei, S. Li, Z. Yang, W. Zheng, and W. Le (2017). Nanomedicine12, 11.

    Google Scholar 

  77. Y. Zhang, N. Kong, Y. Zhang, W. Yang, and F. Yan (2017). Theranostics7, 5.

    Google Scholar 

  78. B. Mili, K. Das, A. Kumar, A. Saxena, P. Singh, S. Ghosh, and S. Bag (2018). J. Mater. Sci. Mater. Med.29, 4.

    Google Scholar 

  79. S. Das, M. Sharma, D. Saharia, K. K. Sarma, M. G. Sarma, B. B. Borthakur, and U. Bora (2015). Biomaterials62, 66.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Isfahan University of Medical Sciences for their financial support (Grant No. 196052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Razavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedebrahimi, R., Razavi, S. & Varshosaz, J. Controlled Delivery of Brain Derived Neurotrophic Factor and Gold-Nanoparticles from Chitosan/TPP Nanoparticles for Tissue Engineering Applications. J Clust Sci 31, 99–108 (2020). https://doi.org/10.1007/s10876-019-01621-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01621-9

Keywords

Navigation