Skip to main content
Log in

In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The corrosion behaviour of Mg–Mn and Mg–Mn–Zn magnesium alloy in a phosphate buffered simulated body fluid (SBF) has been investigated by electrochemical testing and weight loss experiment for bone implant application. Long passivation stage and noble breakdown potential in the polarization curves indicated that a passive layer could be rapidly formed on the surface of magnesium alloy in the phosphate buffered SBF, which in turn can protect magnesium from fast corrosion. Surfaces of the immersed magnesium alloy were characterized by SEM, EDS, SAXS and XPS. Results have shown that Mg–Mn and Mg–Mn–Zn alloy were covered completely by an amorphous Mg-containing phosphate reaction layer after 24 h immersion. The corrosion behaviour of magnesium alloys can be described by the dissolving of magnesium through the reaction between magnesium and solution and the precipitating of Mg-containing phosphate on the magnesium surface. Weight loss rate and weight gain rate results have indicated that magnesium alloys were corroded seriously at the first 48 h while Mg-containing phosphate precipitated fast on the surface of magnesium alloy. After 48–96 h immersion, the corrosion reaction and the precipitation reaction reach a stable stage, displaying that the phosphate layer on magnesium surface, especially Zn-containing phosphate layer could provide effective protection for magnesium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. WITTE, V. KAESE, H. HAFERKAMP, E. SWITZER, A. MEYER-LINDENBERG, C. J. WIRTH and H. WINDHAGEN, Biomaterials 26 (2005) 3557

    Article  CAS  Google Scholar 

  2. E. D. MCBRIDE, J. Am. Med. Assoc. 111 (1938) 2464

    CAS  Google Scholar 

  3. V. V. TROITSKII and D. N. TSITRIN, Khirurgiia 8 (1944) 41

    Google Scholar 

  4. M. S. ZNAMENSKII, Khirurgiia 12 (1945) 60

    Google Scholar 

  5. H. INOUE, K. SUGAHARA, A. YAMAMOTO and H. TSUBAKINO, Corrosion Science, 44 (2002) 603

    Article  CAS  Google Scholar 

  6. G. L. SONG, A. L. BOWLES and D. H. STJOHN, Mater. Sci. Eng. A A366 (2004) 74–86

    Google Scholar 

  7. B. HEUBLEIN, R. ROHDE and V. KAESE, Heart 89 (2003) 651

    Article  CAS  Google Scholar 

  8. H. KUWAHARA, Y. Al-ABDULLAT and M. OHTA, Mater Sci. Forum 350–351 (2000) 349

    Google Scholar 

  9. H. KUWAHARA, N. MAZAKI, M. MABUCHI, C. WEIN and T. AIZAWAET, Mater Sci. Forum 419–422 (2003) 1007

    Article  Google Scholar 

  10. D. ZAFFE, C. BERTOLDI and U. Consolo, Biomaterials 25 (2004) 3837

    Article  CAS  Google Scholar 

  11. www.magnesium-elektron.com, Elektron WE43

  12. F. WITTE, J. FISCHER, J. NELLESEN, H. CROSTACK, V. KAESE, A. PISCH, F. BECKMANN and H. WINDHAGEN, Biomaterials, 27 (2006) 1013

    Article  CAS  Google Scholar 

  13. http://www.portfolio.mvm.ed.ac.uk/studentwebs/session2/group29/mangnut.htm

  14. Jef, A. Helsen and H.J. Breme, in “Metals as biomaterials” (Chichester: John Viley & Sons, 1998) p. 268

  15. http://www.healingwithnutrition.com/mineral.htm .

  16. http://www.yestonutrition.com/html.

  17. http://www.merck.com/pubs/mmanual_home/sec12/135.htm

  18. http://www.nutrition.org/nutinfo/

  19. M. M. Avedesian and H. Baker, in “ASM specialty handbook, Magnesium and magnesium alloys” (The Materials Information Society, 1990), p. 15

  20. G. N. Yu, E. L. Zhang, L. P. Xu and K. Yang, in “2006 Beijing International Materials Week”, June 25–30, Beijing, China, p. 331

  21. K. Z. CHONG and T. S. SHIH, Mater. Chem. Phy. 80 (2003) 191

    Article  CAS  Google Scholar 

  22. G. LORIN. in Phosphating of metals (Middlesex: Finishing publications LTD, 1974), p. 32

    Google Scholar 

  23. L. KOUISNI, M. AZZI, M. ZERTOUBI, F. DALARD and S. MAXIMOVITCH, Surf. Coat. Tech. 185 (2004) 58

    Article  CAS  Google Scholar 

  24. S. R. KIM, J. H. LEE, Y. T. KIM, D. H. RIU, S. J. JUNG, Y. J. LEE, S. C. CHUNG and Y. H. KIM, Biomaterials 24 (2003) 1389

    Article  Google Scholar 

Download references

Acknowledgements

One of authors (Erlin Zhang) would like to thank the financial support from Institute of Metal Research and Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Zhang, E., Yin, D. et al. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci: Mater Med 19, 1017–1025 (2008). https://doi.org/10.1007/s10856-007-3219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3219-y

Keywords

Navigation