Skip to main content
Log in

A new titanium biofunctionalized interface based on poly(pyrrole-3-acetic acid) coating: proliferation of osteoblast-like cells and future perspectives

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In recent years, many procedures based on surface modification have been suggested to improve the biocompatibility and biofunctionality of orthopedic titanium-based implants. In this contest, the development of a new titanium-based biomaterial that could be covalently modified with biologically active molecules (i.e., RGD-peptides, growth factors, etc.) able to improve osteoblasts response was investigated. The strategy followed was based on a preliminary coating of the implant material by an adherent thin polymer film to which bioactive molecules could be grafted exploiting the polymer surface chemical reactivity. In this work, we focused our attention on pyrrole-3-acetic acid (Py-3-acetic), a pyrrole with carboxylic acid substituent, whose electrosynthesis and characterization on titanium substrates were already accomplished and whose potentialities in the design of new biocompatible surfaces are well evident. As first step, the biocompatibility of the electrochemically grown PPy-3-acetic films was investigated performing in vitro tests (adhesion and proliferation) with mouse bone marrow cells. Successively, the availability and reactivity of surface carboxylic groups were tested through the grafting of an aminoacidic residue to PPy-3-acetic films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. BROWNE and P. J. GREGSON, Biomaterials 21 (2000) 385

    Article  CAS  Google Scholar 

  2. R. KUMAZAWA, F. WATARI, N. TAKASHI, Y. TANIMURA, M. UO and Y. TOTSUKA, Biomaterials 23 (2002) 37

    Article  Google Scholar 

  3. E. DE GIGLIO, L. DE GENNARO, L. SABBATINI and G. ZAMBONIN, J. Biomater. Sci. Polymer Edn. 12 (2001) 63

    Article  Google Scholar 

  4. K. IDLA, O. INGANAS and M. STRANDBERG, Electrochim. Acta 45 (2000) 2121

    Article  CAS  Google Scholar 

  5. E. DE GIGLIO, M. R. GUASCITO, L. SABBATINI and G. ZAMBONIN, Biomaterials 22 (2001) 2609

    Article  Google Scholar 

  6. E. DE GIGLIO, L. SABBATINI and P. G. ZAMBONIN, J. Biomater. Sci. Polymer Edn. 10 (1999) 845

    Google Scholar 

  7. E. DE GIGLIO, L. SABBATINI, S. COLUCCI and G. ZAMBONIN, J. Biomater. Sci. Polymer Edn. 11 (2000) 1073

    Article  Google Scholar 

  8. J. Y. WONG, R. LANGER and D. E. INGBER, Proc. Natl. Acad. Sci. USA 91 (1994) 3201

    Article  CAS  Google Scholar 

  9. C. E. SCHMIDT, V. R. SHASTRI, J. P. VACANTI and R. LANGER, Proc. Natl. Acad. Sci. USA 94 (1997) 8948

    Article  CAS  Google Scholar 

  10. D. TESSIER, L. H. DAO, Z. ZHANG, M. W. KING and R. GUIDON, J. Biomater. Sci. Polymer Edn. 11 (2000) 1083

    Article  Google Scholar 

  11. E. DE GIGLIO In PhD Thesis National Library, Florence, (Italy), 1997

  12. H. CASTANO, E. A. O’REAR, P. S. McFRETRIDGE and V. I. SIKAVITSAS, Macromol. Biosci. 4 (2004) 785

    Article  CAS  Google Scholar 

  13. X. WANG, X. GU, C. YUAN, S. CHEN, P. ZHANG, T. ZHANG, J. YAO, F. CHEN and G. CHEN, J. Biomed. Mater. Res. 68 A (2004) 411

    Article  Google Scholar 

  14. P. G. PICKUP, J. Electroanal. Chem. 225(1) (1987) 273

    Article  CAS  Google Scholar 

  15. T. INAGAKI, M. HUNTER, X. Q. YANG, T. A. SKOTHEIM, H. S. LEE and Y. OKAMOTO, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 160 (1988) 79

    Article  Google Scholar 

  16. D. DELABOUGLISE and F. GARNIER, New J. Chem. Technol. Sect. A 15 (1991) 233

    CAS  Google Scholar 

  17. P. N. BARTLETT, M. C GROSSEL and E. MILLÁN BARRIOS, J. Electroanal. Chem. 487 (2000) 142

    Article  CAS  Google Scholar 

  18. K. S. RYDER, D. G. MORRIS and J. M. COOPER, Biosens. Bioelectron. 12 (1997) 721

    Article  CAS  Google Scholar 

  19. F. GARNIER, H. KORRI-YOUSSOUFI, P. SRIVASTAVA and A. YASSAR, J. Am. Chem. Soc. 116 (1994) 8813

    Article  CAS  Google Scholar 

  20. B. F. Y. YON-HIN and C. R. LOWE, J. Electroanal. Chem. 347 (1994) 167

    Article  Google Scholar 

  21. F. GARNIER, H. KORRI-YOUSSOUFI, P. SRIVASTAVA, B. MANDRAND and T. DELAIR, Synth. Met. 100 (1999) 89

    Article  CAS  Google Scholar 

  22. E. DE GIGLIO, C. D. CALVANO, I. LOSITO, L. SABBATINI, P. G. ZAMBONIN, A. TORRISI and A. LICCIARDELLO, Surf. Interface Anal. 37 (2005) 580

    Article  Google Scholar 

  23. P. GODILLOT, H. KORRI-YOUSSOUFI, P. SRIVASTAVA, A. EL KASSMI and F. GARNIER, Synth. Met. 83 (1996) 117

    Article  Google Scholar 

  24. M. GRANO, G. MORI, V. MINIELLI, O. BAROU, S. COLUCCI, G. GIANNELLI, C. ALEXANDRE, A. Z. ZALLONE and L. VICO, Calcif. Tissue Int. 70 (2002) 176

    Article  CAS  Google Scholar 

  25. S. LAKARD, G. HERLEM, A. PROPPER, A. KASTNER, G. MICHEL, N. VALLES-VILLARREAL, T. GHARBI and B. FAHYS, Bioelectrochemistry 62 (2004) 19

    Article  CAS  Google Scholar 

  26. T. AOKI, M. TANINO, K. SANUI, N. OGATA and K. KUMAKURA, Biomaterials 17 (1997) 1971

    Article  Google Scholar 

  27. T. AOKI, M. TANINO, K. SANUI, N. OGATA, K. KUMAKURA, Y. SAKURAI and M. WATANABE, Synth. Met. 71 (1995) 2229

    Article  CAS  Google Scholar 

  28. R. L. WILLIAMS and P. J. DOHERT, J. Mater. Sci. Mater. Med. 5 (1994) 429

    Article  CAS  Google Scholar 

  29. X. CUI, J. WILER, M. DZAMAN, R. A. ALTSCHULER and D. C. MARTIN, Biomaterials 24 (2003) 777

    Article  CAS  Google Scholar 

  30. X. JIANG, Y. MAROIS, A. TRAORE, D. TESSIER, D. TESSIER, L. H. DAO, R. GUIDOIN and Z. ZHANG Tissue Eng. 8 (2002) 635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support provided by the Ministero per l’Università e la Ricerca (MIUR) and Università degli Studi di Bari. We also like to thank Mr. S. Giacummo for the technical assistance, Mr. A. Tambone (Centro Interdipartimentale di Servizi nel Settore della Spettroscopia) for the technical support in the XPS measurements and Dr. Angela Punzi for her precious collaboration in the chemical synthesis of pyrrole-3-acetic acid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira De Giglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Giglio, E., Cometa, S., Calvano, CD. et al. A new titanium biofunctionalized interface based on poly(pyrrole-3-acetic acid) coating: proliferation of osteoblast-like cells and future perspectives. J Mater Sci: Mater Med 18, 1781–1789 (2007). https://doi.org/10.1007/s10856-007-3037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3037-2

Keywords

Navigation